Predictive value of Prostate Specific Antigen for prostate cancer
A nested case control study in EuroSIDA

L Shepherd, A Borges, L Ravn, R Harvey, JP Viard, M Bower, A Grulich, M Silverberg, S De Wit, Ole Kirk, J Lundgren, A Mocroft on behalf of EuroSIDA in EuroCOORD
Background

- cART has improved survival of HIV+ people and the proportion living past 50 is increasing.

- Cancers associated with older age, such as prostate cancer, are expected to become more prevalent.

- Prostate specific antigen (PSA) is a protein associated with higher prostate cancer risk.
Aims

“What is the predictive value of PSA in HIV+ men?”

Changes in markers prior to prostate diagnosis

How well does elevated PSA predict future prostate cancer?

Appropriateness of PSA>4 µg/mL
EuroSIDA is a large prospective cohort with 18,794 patients from 108 clinics in 34 European countries, Israel and Argentina. Regularly collecting:

- CD4 counts, HIV viral loads
- Non-AIDS events (since 2001)
- Prospectively stored plasma samples.
Methods – Study design

Nested case control study
Methods – Study design

Nested case control study

Follow-up

Prostate cancer

After 1 Jan 2001

Prior plasma sample

PCa
Methods – Study design

Nested case control study

Follow-up

PCa
Methods – Study design

Nested case control study

First sample

±2 year window

Latest sample

±2 year window

PCa

EuroSIDA
Methods – Study design

Nested case control study

Age (1st sample)
± 10 years

CD4 (1st sample)
±200 cells/mm3

Region of Europe
Methods – Samples

All samples prior to diagnosis (or equivalent date in controls)

- Total PSA
- Free PSA
- Testosterone
- Sex hormone binding globulin (SHBG)
Methods – Study design

Nested case control study

EuroSIDA
4978 men
After 2001
Nested case control study

EuroSIDA
4978 men
After 2001

Controls
N=40

Prostate cancers
N=21
Methods – Study design

Nested case control study

Controls N=40

Baseline: First sample date

Follow-up
Median: 6 IQR: 2 – 9 years

Last sample - Prostate cancer
Median: 7 IQR: 4-11 months
Baseline characteristics (first sample)

<table>
<thead>
<tr>
<th>Factors</th>
<th>Total</th>
<th>Prostate cancer</th>
<th></th>
<th></th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (%)</td>
<td>Cases</td>
<td>Controls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>61 (100.0)</td>
<td>21 (100.0)</td>
<td>40 (100.0)</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Risk group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homosexual</td>
<td>47 (77.0)</td>
<td>17 (81.0)</td>
<td>30 (75.0)</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>Heterosexual</td>
<td>7 (11.5)</td>
<td>2 (9.5)</td>
<td>5 (12.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDU</td>
<td>2 (3.3)</td>
<td>0 (0.0)</td>
<td>2 (5.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White ethnicity</td>
<td>57 (93.4)</td>
<td>21 (100.0)</td>
<td>36 (90.0)</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>No prior NADM</td>
<td>59 (96.7)</td>
<td>19 (90.5)</td>
<td>40 (100.0)</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>No prior ADM</td>
<td>55 (90.2)</td>
<td>21 (100.0)</td>
<td>34 (85.0)</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>On cART</td>
<td>58 (95.1)</td>
<td>20 (95.2)</td>
<td>38 (95.0)</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>51 (48,57)</td>
<td>52 (49,57)</td>
<td>51 (47,56)</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>CD4 count (cells/mm³)</td>
<td>437 (243,610)</td>
<td>460 (260,610)</td>
<td>426 (230,595)</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>log₁₀ HIV VL (copies/ml)</td>
<td>1.9 (1.6,2.6)</td>
<td>1.9 (1.6,2.6)</td>
<td>2.0 (1.6,2.6)</td>
<td>0.40</td>
<td></td>
</tr>
</tbody>
</table>
total PSA by time before diagnosis

Annual % change in Cases: 15 (10,20)% P<0.01

Annual % change in Controls: 0 (-2, 3)% P=0.71

Difference in rate between cases and controls: P<0.01
Free PSA by time before diagnosis

Annual % change in Cases: 11 (7,16)\% P<0.01

Annual % change in Controls: 0 (-2, 3)\% P=0.70

Difference in rate between cases and controls: P<0.01
Testosterone & SHBG by time before diagnosis

% change in Cases: -2 (-4, 0)% P=0.13

% change in Controls: -2 (-3, -1)% P<0.01

Difference in rate between cases and controls: P=0.96
Testosterone & SHBG by time before diagnosis

% change in Cases: -2 (-4, 0)% $P=0.13$
% change in Controls: -2 (-3, -1)% $P<0.01$

Difference in rate between cases and controls: $P=0.96$

% change in Cases: 0 (-1,2)% $P=0.82$
% change in Controls: 0 (-2, 2)% $P=0.65$

Difference in rate between cases and controls: $P=0.58$

Case – ○
Control – △
Median total PSA

Baseline
- Median (Case): [value]
- Median (Control): [value]
- N = 21

Latest
- Median (Case): [value]
- Median (Control): [value]
- N = 21

P<0.01
P=0.04

N = 38
N = 39
Median free PSA

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Latest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median (Case)</td>
<td>0.4 N = 21</td>
<td>0.8 N = 21</td>
</tr>
<tr>
<td>Median (Control)</td>
<td>0.2 N = 38</td>
<td>0.2 N = 39</td>
</tr>
</tbody>
</table>

P < 0.01
Baseline: cases = 21, controls = 38; Event: cases = 21, controls = 39.

Median testosterone and SHBG

P=0.73 P=0.92 P=0.83 P=0.99
Oddsratio of prostate cancer for 2x higher marker

<table>
<thead>
<tr>
<th>Marker</th>
<th>Baseline</th>
<th>Latest</th>
<th>cOR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total PSA</td>
<td></td>
<td></td>
<td>4.7 (1.7,12.9)</td>
<td><.01</td>
</tr>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
<td>8.1 (1.1,58.9)</td>
<td>0.04</td>
</tr>
<tr>
<td>Latest</td>
<td></td>
<td></td>
<td>10.4 (1.9,55.6)</td>
<td><.01</td>
</tr>
<tr>
<td>Free PSA</td>
<td></td>
<td></td>
<td>5.4 (1.7,17.4)</td>
<td><.01</td>
</tr>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
<td>10.4 (1.9,55.6)</td>
<td><.01</td>
</tr>
<tr>
<td>Latest</td>
<td></td>
<td></td>
<td>10.4 (1.9,55.6)</td>
<td><.01</td>
</tr>
<tr>
<td>Testosterone</td>
<td></td>
<td></td>
<td>0.8 (0.3,2.4)</td>
<td>0.73</td>
</tr>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
<td>1.1 (0.3,3.3)</td>
<td>0.92</td>
</tr>
<tr>
<td>Latest</td>
<td></td>
<td></td>
<td>1.1 (0.3,3.3)</td>
<td>0.92</td>
</tr>
<tr>
<td>SHBG</td>
<td></td>
<td></td>
<td>0.9 (0.4,2.1)</td>
<td>0.83</td>
</tr>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
<td>1.0 (0.4,2.7)</td>
<td>0.99</td>
</tr>
<tr>
<td>Latest</td>
<td></td>
<td></td>
<td>1.0 (0.4,2.7)</td>
<td>0.99</td>
</tr>
</tbody>
</table>
Predictive value of markers

AUC statistic

- Total PSA: 0.9
- Free PSA: 0
- Testosterone: 0
- SHBG: 0
Predictive value of markers

- Total PSA: 0.90
- Free PSA: 0.82
- Testosterone
- SHBG
Predictive value of markers

<table>
<thead>
<tr>
<th>Marker</th>
<th>AUC Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total PSA</td>
<td>0.90</td>
</tr>
<tr>
<td>Free PSA</td>
<td>0.82</td>
</tr>
<tr>
<td>Testosterone</td>
<td>0.51</td>
</tr>
<tr>
<td>SHBG</td>
<td>0.51</td>
</tr>
</tbody>
</table>
Predictive value of markers

- Total PSA: 0.90
- Free PSA: 0.82
- Testosterone: 0.51
- SHBG: 0.51
- All markers: 0.91
Total PSA >4 µg/mL

Sensitivity: 37%

Specificity: 99%
Limitations

• Small number of prostate cancers

• Other markers: ProPSA

• No information on cancer treatment
Strengths

• Many prostate cancers (relatively)

• Prospective and independent plasma samples
Conclusions

PSA highly predictive of PCa in HIV+ men

PSA is elevated more than 5 years before prostate cancer

Further analysis to identify age-specific PSA cut-offs for maximum sensitivity and specificity for identifying high risk patients for further testing
The multi-centre study group, EuroSIDA (national coordinators in parenthesis).

Argentina: (M Losso), M Kundro, Hospital JM Ramos Mejia, Buenos Aires. **Austria:** (N Vetter), Pulumologisches Zentrum der Stadt Wien, Vienna; R Zangerle, Medical University Innsbruck, Innsbruck. **Belarus:** (I Karpoor), A Vassilenko, Belarus State Medical University, Minsk, VM Mitsura, Gomel State Medical University, Gomel; P Paduto, Regional AIDS Centre, Svetlogorsk. **Belgium:** (N Clumeneck), S De Wit, M Delforge, Saint-Pierre Hospital, Brussels; E Florence, Institute of Tropical Medicine, Antwerp; L Vandeckerkhove, University Ziekenhuis Gent, Gent. **Bosnia-Herzegovina:** (V Hadzisamovic), Klinicki Centar Univerziteta Sarajevo, Sarajevo. **Bulgaria:** (K Kostov), Infectious Diseases Hospital, Sofia. **Croatia:** (J Bogovac), University Hospital of Infectious Diseases, Zagreb. **Czech Republic:** (L Machala), D Jilich, Faculty Hospital Bulovka, Prague; S Dsedlacek, Charles University Hospital, Plzen. **Denmark:** (J Nielsen), G Kronborg, T Benfield, M Larsen, Hvidovre Hospital, Copenhagen; J Gerstoft, T Katzenstein, A-B E Hansen, P Skinhøj, Rigshospitalet, Copenhagen; C Pedersen, Odense University Hospital, Odense; L Ostergaard, Skejby Hospital, Aarhus, U B Dragsted, Roskilde Hospital, Roskilde; L N Nielsen, Hillerød Hospital, Hillerød. **Estonia:** (K Zilmer), West-Tallinn Central Hospital, Tallinn; Jelena Smidt, Nakkusosakond Siseklinik, Kohltä-Järve. **Finland:** (M Ristola), Helsinki University Central Hospital, Helsinki. **France:** (C Katlama), Hôpital de la Pitie-Salpêtrière, Paris; J-P Viard, Hôtel-Dieu, Paris; P-M Girard, Hospital Saint-Antoine, Paris; P Vanhems, University Claude Bernard, Lyon; C Pradier, Hôpital de l’Archet, Nice; F Dabis, D Neau, Unité INSERM, Bordeaux, C Duvivier, Hôpital Necker-Enfants Malades, Paris. **Germany:** (J Rockstroh), Universitäts Klinik Bonn; R Schmidt, Medizinische Hochschule Hannover; J van Lunzen, O Degen, University Medical Center Hamburg-Eppendorf, Infectious Diseases Unit, Hamburg; HH Stellbrink, IPM Study Center, Hamburg; C Stefan, JW Goethe University Hospital, Frankfurt; J Bogner, Medizinische Poliklinik, Munich; G. Fätkenheuer, Universität Köln, Cologne. **Georgia:** (N Chkheartishvili) Infectious Diseases, AIDS & Clinical Immunology Research Center, Tbilisi. **Greece:** (K Kostakis), P Gargalianos, G Xylomenos, J Perdios, Athens General Hospital; H Sambatakou, Ippokration General Hospital, Athens. **Hungary:** (D Banhegyi), Szent László Hospital, Budapest. **Iceland:** (M Gottfredsson), Landspitali University Hospital, Reykjavik. **Ireland:** (F Mulcahy), St. James’s Hospital, Dublin. **Israel:** (I Yust), D Turner, M Burke, Ichilov Hospital, Tel Aviv; E Shahar, G Hassoun, Rambam Medical Center, Haifa; H Elinav, M Haouzi, Hadassah University Hospital, Jerusalem; ZM Sthoeger, AIDS Center (Neve Or), Jerusalem. **Italy:** (A D’Arminio Monforte), Istituto Di Clinica Malattie Infettive e Tropicale, Milan; R Esposito, I Mazzeu, C Mussini, Università Modena, Modena; R Pristera, Ospedale Generale Regionale, Bolzano; F Mazzotta, A Gabbotti, Ospedale S Maria Annunziata, Firenze; V Vullo, M Lichtner, University di Roma la Sapienza, Rome; M Zaccarelli, A Antinori, R Acinapura, G D’Offizi, Istituto Nazionale Malattie Infettive Lazzaro Spallanzani, Rome; A Lazzarin, A Castagna, N Gianotti, Ospedale San Raffaele, Milan; M Galli, A Ridolfo, Osp. L. Sacco, Milan. **Latvia:** (B Rozentale), Infectology Centre of Latvia, Riga. **Lithuania:** (J Rockstroh), Uzduviniene, Lithuanian AIDS Centre, Vilnius. **Luxembourg:** (T Staub), R Hemmer, Centre Hospitalier, Luxembourg. **Netherlands:** (P Reiss), Academisch Medisch Centrum bij de Universiteit van Amsterdam, Amsterdam. **Norway:** (V Ormaasen), A Maeland, J Bruun, Ullevål Hospital, Oslo. **Poland:** (B Knysz), J Gasiorowski, M Inglo, Medical University, Wrocław; A Horban, E Bakowska, Centrum Diagnostyki i Terapii AIDS, Warsaw; A Grzeszczuk, R Fisiak, Medical University, Białystok; M Parczewski, M Pynka, K Maciejewska, Medical University, Szczecin; M Beniowski, E Mularska, Osrodek Diagnostyki i Terapii AIDS, Chorzow; T Smiatacz, Medical University, Gdaňsk; E Jablonskaja, E Malełepsza, K Wojcik, Wojewodzki Szpital Specjalistyczny, Lodz; I Mozert-Lisewska, Poznan University of Medical Sciences, Poznan. **Portugal:** (M Doroana), L Caldeira, Hospital Santa Maria, Lisbon; M Mansinho, Hospital de Egas Moniz, Lisbon; F Maltez, Hospital Curry Cabral, Lisbon. **Romania:** (R Radoi), C Oprea, Spitalul de Boli Infecţioase si Tropicale: Dr. Victor Babes, Bucharest. **Russia:** (A Rakhamanova), Medical Academy Botkin Hospital, St Petersburg; A Rahkmanova, St Petersburg AIDS Centre, St Petersburg; T Trofimova, Novgorod Centre for AIDS, Novgorod, I Khromova, Centre for HIV/AIDS & Infectious Diseases, Kaliningrad; E Kuzovatova, Nizhny Novgorod Scientific and Research Institute, Nizhny Novgorod. **Serbia:** (D Jevtic), The Institute for Infectious and Tropical Diseases, Belgrade. **Slovakia:** A Shunnar, D Staneková, Dérer Hospital, Bratislava. **Slovenia:** (J Tomazic), University Clinical Centre Ljubljana, Ljubljana. **Spain:** S Moreno, J. M. Rodriguez, Hospital Ramon y Cajal, Madrid; B Clotet, A Jou, R Paredes, C Tural, J Puig, I Bravo, Hospital Germans Trias i Pujol, Badalona; JM Gatell, JM Miró, Hospital Clinic Universitari de Barcelona, Barcelona; P Domingo, M Gutierrez, M Mateo, MA Sambeat, Hospital Sant Pau, Barcelona; JM Laporte, Hospital Universitario de Alava, Vitoria-Gasteiz. **Sweden:** (A Blaxhult), Vethselaen-Sodersjukhuset, Stockholm; L Flamholc, Malmö University Hospital, Malmö, A Thalme, A Sonnerborg, Karolinska University Hospital, Stockholm. **Switzerland:** (B Ledergerber), R Weber, University Hospital, Zurich; M Cavassini, Centre Hospitalier Universitaire Vaudois, Lausanne; C Calmy, Hospital Cantonal Universitaire de Geneve, Geneve; H Furrer, Inselspital Bern, Bern; M Battegay, L Elzi, University Hospital Basel; P Schmid, Kantonsspital, St. Gallen. **Ukraine:** (E Kravchenko), N Chentsov, Kiev Centre for AIDS, Kiev; V Frolov, K Kutsyna, I Baskakov, Luhansk State Medical University, Luhansk; S Servitsky, Odessa Region AIDS Center, Odessa; A Kuznetsova, Kharkov State Medical University, Kharkov; G Kyseleva, Crimean Republic AIDS Centre, Simferopol. **United Kingdom:** (B Gazzard), St. Stephen’s Clinic, Chelsea and Westminster Hospital, London; AM Johnson, E Simons, S Edwards, Mortimer Market Centre, London; A Phillips, MA Johnson, A Mocroft, Royal Free and University College Medical School, London (Royal Free Campus); C Orkin, Royal London Hospital, London; J Weber, G Scullard, Imperial College School of Medicine at St. Mary’s, London; M Fisher, Royal Sussex County Hospital, Brighton; C Leon, Western General Hospital, Edinburgh. The following centers have previously contributed data to EuroSIDA: Bernhard Nocht Institut für Tropenmedizin, Hamburg, Germany 1st IKA Hospital of Athens, Athens, Greece Ospedale Riuniti, Divisione Malattie Infettive, Bergamo, Italy Ospedale Cotugno, Divisione Malattie Infettive, Napoli, Italy Hospital Carlos III, Departamento de Enfermedades Infecciosas, Madrid, Spain EuroSIDA Steering Committee Steering Committee: J Gatell, B Gazzard, A Horban, I Karpoor, B Ledergerber, M Losso, A D’Arminio Monforte, C Pedersen, A Rahkmanova, M Ristola, A Phillips, P Reiss, J Lundgren, J Rockstroh, S De Wit Chair: J Rockstroh Vice-chair: S De Wit Study Co-leads: A Mocroft, O Kirk EuroSIDA Representatives to EuroCoord: O Kirk, A Mocroft, J Grarup, P Reiss, A Cozzi-Lepri, R Thiebout, J Rockstroh, D Burger, R Paredes, L Peters EuroSIDA staff Coordinating Centre Staff: D Podlekareva, L Peters, JE Nielsen, C Matthews, AH Fischer, A Bojesen, D Raben, D Kristensen, K Grønbørg Laut, JF Larsen Statistical Staff: A Mocroft, A Phillips, A Cozzi-Lepri, D Grint, L Shepherd, A Schultz