Testing patterns and predictive value of Prostate Specific Antigen in a European HIV – positive cohort: Does one size fit all?

L Shepherd, A Borges, L Ravn, R Harvey, M Bower, A Grulich, M Silverberg, Ole Kirk, J Lundgren, A Mocroft on behalf of EuroSIDA in EuroCOORD
Background

• cART has improved survival of HIV+ people and the proportion living past 50 is increasing

• Cancers associated with older age, such as prostate cancer, are expected to become more prevalent

• Prostate specific antigen (PSA) is a protein associated with higher prostate cancer risk
Background

• There is limited data available on variations in PSA testing practices in HIV+ men

• No clear guidelines on use of PSA tests in HIV+ men, which largely rely on application of recommendations for the general population (PSA>4 ug/L)
Aims

• To describe variations in PSA testing patterns in European HIV+ men
 Cohort study in EuroSIDA

• To assess the use of PSA>4 µg/L to indicate PCa risk and to identify whether a better cut-off exists for HIV positive people
 nested case-control study in EuroSIDA
1. Variations in PSA testing in HIV+ men across Europe
PSA testing rates in Europe

Cohort study

PCa free at baseline

Baseline: Latest of first visit or 1 Jan 2008

Centres screening ≥ 5% of men per year

Followed until first PCa diagnosis, last visit or death
PSA testing rates: Baseline characteristics

<table>
<thead>
<tr>
<th>Baseline N(%)/Median (IQR)</th>
<th>All Men</th>
<th>≥1 PSA test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>4,482 (100)</td>
<td>1,318 (100)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>41 (35,48)</td>
<td>44 (38,52)</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>East</td>
<td>694 (15)</td>
<td>302 (23)</td>
</tr>
<tr>
<td>Argentina</td>
<td>262 (6)</td>
<td>27 (2)</td>
</tr>
<tr>
<td>South</td>
<td>1,389 (31)</td>
<td>393 (30)</td>
</tr>
<tr>
<td>West</td>
<td>814 (18)</td>
<td>284 (22)</td>
</tr>
<tr>
<td>North</td>
<td>1,323 (30)</td>
<td>312 (24)</td>
</tr>
<tr>
<td>Risk group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homosexual</td>
<td>2,701 (60)</td>
<td>860 (65)</td>
</tr>
<tr>
<td>Heterosexual</td>
<td>561 (13)</td>
<td>141 (11)</td>
</tr>
<tr>
<td>IDU</td>
<td>925 (21)</td>
<td>242 (18)</td>
</tr>
<tr>
<td>Non-white ethnicity</td>
<td>348 (8)</td>
<td>78 (6)</td>
</tr>
<tr>
<td>Prior AIDS event</td>
<td>1,202 (27)</td>
<td>413 (31)</td>
</tr>
<tr>
<td>Prior Non-AIDS event*</td>
<td>198 (4)</td>
<td>66 (5)</td>
</tr>
<tr>
<td>Prior ART</td>
<td>3,917 (87)</td>
<td>1,205 (91)</td>
</tr>
<tr>
<td>CD4 cells/mm3</td>
<td>510 (360,702)</td>
<td>519 (368,720)</td>
</tr>
<tr>
<td>HIV-viral load copies/ml</td>
<td><49 (<39,<59)</td>
<td><49 (<39,<49)</td>
</tr>
</tbody>
</table>

*Non-AIDS defining events: pancreatitis, grade 3 or 4 hepatic encephalopathy or liver-related death, myocardial infarction, stroke, coronary artery bypass graft, coronary angioplasty, carotid endarterectomy (grouped together as serious CV events), and end-stage renal disease.
Adjusted incidence rate ratios of receiving PSA testing during follow-up after 1/1/2008

<table>
<thead>
<tr>
<th>Age (Years)</th>
<th>0.4</th>
<th>0.8</th>
<th>1.6</th>
<th>3.2</th>
<th>6.4</th>
<th>12.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>< = 35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36 - 40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41 - 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51 +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calendar year (per 5 years additional follow-up)</th>
<th>0.4</th>
<th>0.8</th>
<th>1.6</th>
<th>3.2</th>
<th>6.4</th>
<th>12.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>East central</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North (Reference)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>0.4</th>
<th>0.8</th>
<th>1.6</th>
<th>3.2</th>
<th>6.4</th>
<th>12.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>East central</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North (Reference)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Risk group</th>
<th>0.4</th>
<th>0.8</th>
<th>1.6</th>
<th>3.2</th>
<th>6.4</th>
<th>12.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homosexual (Reference)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterosexual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-white vs White ethnicity</th>
<th>0.4</th>
<th>0.8</th>
<th>1.6</th>
<th>3.2</th>
<th>6.4</th>
<th>12.8</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Smoking status</th>
<th>0.4</th>
<th>0.8</th>
<th>1.6</th>
<th>3.2</th>
<th>6.4</th>
<th>12.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never (reference)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Former</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hepatitis C + (Yes vs No)</th>
<th>0.4</th>
<th>0.8</th>
<th>1.6</th>
<th>3.2</th>
<th>6.4</th>
<th>12.8</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>CD4 count/mm³</th>
<th>0.4</th>
<th>0.8</th>
<th>1.6</th>
<th>3.2</th>
<th>6.4</th>
<th>12.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - <200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 - < 350</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>350 - < 500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 + (Reference)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HIV VL > 400 vs ≤ 400 cps/mL²</th>
<th>0.4</th>
<th>0.8</th>
<th>1.6</th>
<th>3.2</th>
<th>6.4</th>
<th>12.8</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prior ART vs None</th>
<th>0.4</th>
<th>0.8</th>
<th>1.6</th>
<th>3.2</th>
<th>6.4</th>
<th>12.8</th>
</tr>
</thead>
</table>

Models additionally adjusted for:
Ethnic origin, BMI at baseline, and time-updated diagnoses of AIDS defining and non-AIDS malignancies [ADM], NADM, AIDS-defining [excluding ADM], and non-AIDS-defining events [defined as cardiovascular, end-stage renal disease, liver failure and pancreatitis, excluding NADM], prior hypertension, prior and hepatitis-B infection.
Adjusted incidence rate ratios of receiving PSA testing during follow-up after 1/1/2008

Age (Years)
- <= 35
- 36 - 40 (Reference)
- 41 - 50
- 51 +

Calendar year (per 5 years additional follow-up)

Region
- East central
- East
- Argentina
- South
- West
- North (Reference)

Risk group
- Homosexual (Reference)
- IDU
- Heterosexual

Non-white vs White ethnicity

Smoking status
- Never (reference)
- Current
- Former

Hepatitis C + (Yes vs No)

CD4 count/mm³
- 0 -<200
- 200 - < 350
- 350 - < 500
- 500 + (Reference)

HIV VL > 400 vs ≤ 400 cps/mL²

Prior ART vs None

Models additionally adjusted for:
- Ethnic origin, BMI at baseline, and time-updated diagnoses of AIDS defining and non-AIDS malignancies [ADM], NADM, AIDS-defining [excluding ADM], and non-AIDS-defining events [defined as cardiovascular, end-stage renal disease, liver failure and pancreatitis, excluding NADM], prior hypertension, prior and hepatitis-B infection
Adjusted incidence rate ratios of receiving PSA testing during follow-up after 1/1/2008

Models additionally adjusted for:
Ethnic origin, BMI at baseline, and time-updated diagnoses of AIDS defining and non-AIDS malignancies [ADM], NADM, AIDS-defining [excluding ADM], and non-AIDS-defining events [defined as cardiovascular, end-stage renal disease, liver failure and pancreatitis, excluding NADM], prior hypertension, prior and hepatitis-B infection

Age (Years)
- <= 35
- 36 - 40 (Reference)
- 41 - 50
- 51 +

Calendar year (per 5 years additional follow-up)

Region
- East central
- East
- Argentina
- South
- West
- North (Reference)

Risk group
- Homosexual (Reference)
- IDU
- Heterosexual

Non-white vs White ethnicity

Smoking status
- Never (reference)
- Current
- Former

Hepatitis C + (Yes vs No)

CD4 count/mm3
- 0 - <200
- 200 - < 350
- 350 - < 500
- 500 + (Reference)

HIV VL > 400 vs ≤ 400 cps/mL2

Prior ART vs None

Adjusted incidence rate ratios (IRR) with 95% confidence intervals (95%CI)
Adjusted incidence rate ratios of receiving PSA testing during follow-up after 1/1/2008

Age (Years)
- <= 35
- 36 - 40 (Reference)
- 41 - 50
- 51 +

Calendar year (per 5 years additional follow-up)

Region
- East central
- East
- Argentina
- South
- West
- North (Reference)

Risk group
- Homosexual (Reference)
- IDU
- Heterosexual

Non-white vs White ethnicity

Smoking status
- Never (reference)
- Current
- Former

Hepatitis C + (Yes vs No)

CD4 count/mm3
- 0 -<200
- 200 -< 350
- 350 -< 500
- 500 + (Reference)

HIV VL > 400 vs ≤ 400 cps/mL2

Prior ART vs None

Models additionally adjusted for:
Ethnic origin, BMI at baseline, and time-updated diagnoses of AIDS defining and non-AIDS malignancies [ADM], NADM, AIDS-defining [excluding ADM], and non-AIDS-defining events [defined as cardiovascular, end-stage renal disease, liver failure and pancreatitis, excluding NADM], prior hypertension, prior and hepatitis-B infection

EuroSida

EuroCoord
Adjusted incidence rate ratios of receiving PSA testing during follow-up after 1/1/2008

- **Age (Years)**
 - ≤ 35
 - 36 - 40 (Reference)
 - 41 - 50
 - 51 +

- **Calendar year (per 5 years additional follow-up)**

- **Region**
 - East central
 - East
 - Argentina
 - South
 - West
 - North (Reference)

- **Risk group**
 - Homosexual (Reference)
 - IDU
 - Heterosexual

- **Non-white vs White ethnicity**

- **Smoking status**
 - Never (reference)
 - Current
 - Former

- **Hepatitis C + (Yes vs No)**

- **CD4 count/mm³**
 - 0 -<200
 - 200 - < 350
 - 350 - < 500
 - 500 + (Reference)

- **HIV VL > 400 vs ≤ 400 cps/mL²**

- **Prior ART vs None**

Models additionally adjusted for:
Ethnic origin, BMI at baseline, and time-updated diagnoses of AIDS defining and non-AIDS malignancies [ADM], NADM, AIDS-defining [excluding ADM], and non-AIDS-defining events [defined as cardiovascular, end-stage renal disease, liver failure and pancreatitis, excluding NADM], prior hypertension, prior and hepatitis-B infection
Adjusted incidence rate ratios of receiving PSA testing during follow-up after 1/1/2008

Models additionally adjusted for: Ethnic origin, BMI at baseline, and time-updated diagnoses of AIDS defining and non-AIDS malignancies [ADM], NADM, AIDS-defining [excluding ADM], and non-AIDS-defining events [defined as cardiovascular, end-stage renal disease, liver failure and pancreatitis, excluding NADM], prior hypertension, prior and hepatitis-B infection
2. To assess the use of PSA > 4 µg/L to indicate PCa risk and to identify whether a better cut-off exists for HIV positive people
Optimal PSA cut off

Nested case control study
Optimal PSA cut off

Nested case control study

Cases

Prostate cancer

After 1 Jan 2001

Prior plasma sample
Optimal PSA cut off

Nested case control study

Cases/ Controls

No prostate cancer

After 1 Jan 2001

Prior plasma sample
Optimal PSA cut off

Nested case control study

Cases/controls

Matched

1st sample date ± 2 years

Last sample date ± 2 years

Age (1st sample) ± 10 years

CD4 (1st sample) ± 200 cells/mm3

Region of Europe
Optimal PSA cut off

Nested case control study

Cases/controls

Matched

Total PSA (tPSA)

Samples
Optimal PSA cut off

Nested case control study
Optimal PSA cut off

EuroSIDA
Men with follow-up >1 January 2001
9,112

Nested case control study

Controls
N=40

Prostate cancers
N=21
Baseline Characteristics (first sample)

<table>
<thead>
<tr>
<th>Factors</th>
<th>Total</th>
<th>Prostate cancer</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (%)</td>
<td>Cases</td>
<td>Controls</td>
</tr>
<tr>
<td>Total</td>
<td>61 (100.0)</td>
<td>21 (100.0)</td>
<td>40 (100.0)</td>
</tr>
<tr>
<td>Risk group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homosexual</td>
<td>47 (77.0)</td>
<td>17 (81.0)</td>
<td>30 (75.0)</td>
</tr>
<tr>
<td>Heterosexual</td>
<td>7 (11.5)</td>
<td>2 (9.5)</td>
<td>5 (12.5)</td>
</tr>
<tr>
<td>IDU</td>
<td>2 (3.3)</td>
<td>0 (0.0)</td>
<td>2 (5.0)</td>
</tr>
<tr>
<td>Non White ethnicity</td>
<td>4 (6.6)</td>
<td>0 (0.0)</td>
<td>4 (10.0)</td>
</tr>
<tr>
<td>Prior NADM</td>
<td>2 (3.3)</td>
<td>2 (9.5)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Prior rADM</td>
<td>6 (9.8)</td>
<td>0 (0.0)</td>
<td>6 (15.0)</td>
</tr>
<tr>
<td>On cART</td>
<td>58 (95.1)</td>
<td>20 (95.2)</td>
<td>38 (95.0)</td>
</tr>
<tr>
<td>Median (IQR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>51 (48.57)</td>
<td>52 (49.57)</td>
<td>51 (47.56)</td>
</tr>
<tr>
<td>CD4 count (cells/mm3)</td>
<td>437 (243,610)</td>
<td>460 (260,610)</td>
<td>426 (230,595)</td>
</tr>
<tr>
<td>\log_{10} HIV VL (copies/ml)</td>
<td>1.9 (1.6,2.6)</td>
<td>1.9 (1.6,2.6)</td>
<td>2.0 (1.6,2.6)</td>
</tr>
</tbody>
</table>

EuroSIDA

EuroCoord
total PSA by time before diagnosis

Years before PCa/last sample

tPSA(µg/L)

Case - ○
Control - △
Median latest total PSA in cases and controls

Case
Control
IQR

P=0.04
ROC curve and Area Under the Curve for total PSA

AUC=0.9
Optimal cut-off for total PSA
Sensitivity: 38%
Specificity: 99%

Optimal cut-off for total PSA
Sensitivity: 81%
Specificity: 84%

Optimal cut-off for total PSA
Optimal cut-off for total PSA

Sensitivity: 81%
Specificity: 84%
Optimal cut-off for total PSA

<table>
<thead>
<tr>
<th>Age group</th>
<th>Cut off</th>
<th>Range</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 50</td>
<td>1.4</td>
<td>1.2 – 2.8</td>
<td>86%</td>
<td>94%</td>
</tr>
</tbody>
</table>

Sensitivity and specificity for total PSA

Total PSA > 1.5 µg/L
Optimal cut-off for total PSA

<table>
<thead>
<tr>
<th>Age group</th>
<th>Cut off</th>
<th>Range</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 50</td>
<td>1.4</td>
<td>1.2 – 2.8</td>
<td>86%</td>
<td>94%</td>
</tr>
<tr>
<td>≥50</td>
<td>1.5</td>
<td>-</td>
<td>81%</td>
<td>82%</td>
</tr>
</tbody>
</table>
Limitations

- PSA testing not reported by all centres and under reported
- Reason for PSA testing unknown
- Small number of prostate cancers
- Observational study
Conclusions

• PSA testing in HIV+ men varied in clinics across Europe, and was particularly high in older men

• Total PSA > 4µg/L to indicate high PCa risk was not sensitive in HIV+ men

• Use of the lower cut-off of PSA > 1.5µg/L should be considered

• Clear guidelines on the role of PSA in PCa screening and management for HIV+ men are needed
The EuroSIDA Study Group

The multi-centre study group, EuroSIDA (national coordinators in parenthesis).

Argentina: (M Losso), M Kundro, Hospital JM Ramos Mejia, Buenos Aires. Austria: (N Vetter), Pulmonologisches Zentrum der Stadt Wien, Vienna; R Zangerle, Medical University Innsbruck, Innsbruck. Belarus: (I Karpov), A Vasilienko, Belarus State Medical University, Minsk; VM Mitsura, Gomel State Medical University, Gomel; D Paduto, Regional AIDS Centre, Svetlogorsk. Belgium: (N Clumeck), S De Wit, M Delforge, Saint-Pierre Hospital, Brussels; E Florence, Institute of Tropical Medicine, Antwerp; L Vandekerckhove, University Ziekenhuis Gent, Gent. Bosnia-Herzegovina: (V Hadzisamanovic), Klinicki Centar Univerziteta Sarajevo, Sarajevo. Bulgaria: (K Kostov), Infectious Diseases Hospital, Sofia. Croatia: (J Begovac), University Hospital Hospital Infection Diseases, Zagreb. Czech Republic: (M Machala), D Jiříček, Faculty Hospital Bulovka, Prague; D Sedlacek, Charles University Hospital, Plzen. Denmark: G Kronborg, T Benfield, Hvidovre Hospital, Copenhagen; J Gerstoft, T Køtenstein, A-B E Hansen, Rigshospitalet, Copenhagen; C Pedersen, NF Møller, Odense University Hospital, Odense; L Ostergaard, Skejby Hospital, Aarhus; U B Dragsted, Roskilde Hospital, Roskilde; L N Nielsen, Hillerod Hospital, Hillerød. Estonia: (K Zilmer), West-Tallinn Central Hospital, Tallinn; Jele na Smidt, Nakkusosakond Siseklinik, Kohtla-Järve. Finland: (M Ristola), I Ahola, Helsinki University Central Hospital, Helsinki. France: (C Kattama), Hôpital de la Pitié-Salpêtrière, Paris; J-P Viard, Hôtel-Dieu, Paris; F Dabis, D Neau, Unité INSERM, Bordeaux. Hôpital Necker-Enfants Maladies, Paris; C Pradier, E Fontas, Hôpital de l'Arch et, Nice; F Dabis, D Neau, Unité INSERM, Bordeaux; J Van Lunzen, O Degen, University Medical Center Hamburg-Eppendorf, Infectious Diseases Unit, Hamburg; HJ Stellbrink, IMP Study Center, Hamburg; C Stefan, JW Goethe University Hospital, Frankfurt; J Bogner, Medizinische Poliklinik, Munich; G Fätkenheuer, Universität Köln, Cologne. Georgia: (N Chkhartishvili) Infectious Diseases, AIDS & Clinical Immunology Research Center, Tbilisi. Greece: (J Kosmidis), P Gargalianos, G Xylomenos, P Lourida, Athens General Hospital; H Sambatako u, Ippokration General Hospital, Athens. Hungary: (D Banhegyi), Szent László Hospital, Budapest. Iceland: (M Gottfredsson), Landspitali University Hospital, Reykjavik. Ireland: (F Mulcahy), St. James's Hospital, Dublin. Israel: (I Yost), D Turner, M Burke, Ichilov Hospital, Tel Aviv; E Shahar, G Hassoun, Rambam Medical Center, Haifa; H Elinav, M Haouzi, Hasadassah University Hospital, Jerusalem; ZM Shtoeger, AIDS Center (Neve Or), Jerusalem. Italy: (A D'Amorin Montforte), Istituto Di Clinica Malattie Infettive e Tropicale, Milan; R Esposito, I Mazzu, C Mussini, Università Modena, Modena; F Mazzotta, A Gabutti, Ospedale S Maria Annunziata, Firenze; V Vullo, M Lichtiner, Università di Roma La Sapienza, Rome; M Zaccarelli, A Antonini, R Aicinapura, G D'offizi, Istituto Nazionale Malattie Infettive Lazzaro Spallanzani, Rome; A Lazzarin, A Castagna, N Giontto, Ospedale San Raffaele, M Galli, A Ridollo, Osp. L. Sacco, Milan. Latvia: (B Rozentale), Infectology Centre of Latvia, Riga. Lithuania: (V Uzdaviniene) Vilnius University Hospital Santariskiu Klinikos, Vilnius. Lithuania: (V Uzdaviniene) Vilnius University Hospital Santariskiu Klinikos, Vilnius. Luxembourg: (T Staub), R Hemmer, Centre Hospitalier, Luxembourg. Netherlands: (P Reiss), Academisch Medisch Centrum bij de Universiteit van Amsterdam, Amsterdam. Norway: (O Ormaasen), A Maeland, J Bruun, Ullevål Hospital, Oslo. Poland: (B Krzyz), J Gasioreowski, M Inglot, Medical University, Wroclaw; A Horban, E Bakowska, Klinika Diagnostyki i Terapii AIDS, Warsaw; A Grzeszczuk, R Flišiak, Medical University, Białystok; M Parczewski, M Pyka, K Maciejewska, Medical University, Szczecin; M Beniowski, E Mularzka, Ośrodek Diagnostyki i Terapii AIDS, Chorzów; T Smiatecz, K Mensi, Medical University, Gdańsk; E Janczewska, E Malejewicz, K Wójcik, Wojewódzki Szpital Specjalistyczny, Lodz; I Mozer-Lisiewska, Poznan University of Medical Sciences, Poznań. Portugal: (M Doroana), L Caldeira. Romania: Russia: (V Babes, București), The Institute for Infectious and Tropical Diseases, Belgrade. Slovakia: (A Shumnar, D Staneková, Dier Hospital, Bratislava. Slovenia: (T Tomazic), University Clinical Centre Ljubljana, Ljubljana. Spain: (JM Gatell), JM Miró, Hospital Clinic Universitari de Barcelona, Barcelona; S Moreno, J. M. Rodriguez, Hospital Ramon y Cajal, Madrid; B Coutel, A Jou, R Paredes, C Tural, J Piou, I Brug, Hospital Germans Trias i Pujol, Badalona; P Domingo, M Gutierrez, M Mateo, MA Sambeat, Hospital Sant Pau, Barcelona; JM Laporte, Hospital Universitario de Alava, Vitoria-Gasteiz. Sweden: (A Blaxhult), Venhaelsan-Sodersjukhuset, Stockholm; L Flamholt, Malmö University Hospital, Malmö, K Falconer, A Thalme, A Sonnerborg, Karolinska University Hospital, Stockholm. Switzerland: (B Leedergerber), R Weber, University Hospital Zurich; M Cavassini, University Hospital Lausanne; A Calmy, University Hospital Geneva; H Furrer, University Hospital Zurich; H Walder, P Rettinger, S Hitzl, U. Fond, M. Schmid, University Hospital Basel; P Schmid, Cantonal Hospital St. Gallen. Ukraine: (E Kravchenko), N Chernetsova (deceased), Kiev Centre for AIDS, Kiev; V Frolov, G Kutsyna, I Baskakov, Luhan State Medical University, Luhan; A Kuznetsova, Kharkov State Medical University, Kharkov; G Kyselyova, Crimean Republican AIDS Centre, Simferopol. United Kingdom: (B Blaxhult), St. Stephen's Clinical, Chester and Westminster Hospital, London; AM Johnson, S Simons, E Edwards, Mortimer Market Centre, London; A Phillips, MA Johnson, A Rockstroh, Royal Free and University College Hospital, London (Royal Free Campus); C Orkin, Royal London Hospital, London; J Weber, G Scullard, Imperial College School of Medicine at St. Mary's, London; A Clarke, Royal Sussex County Hospital, Brighton; C Leen, Western General Hospital, Edinburgh. The following centers have previously contributed data to EuroSIDA: Bernhard Nocht Institut für Tropenmedizin, Hamburg, Germany; 1st I.K.A Hospital of Athens, Athens, Greece; Ospedale Riunito, Divisione Malattie Infettive, Bergamo, Italy. Ospedale di Bolzano, Divisione Malattie Infettive, Bolzano, Italy; Ospedale Cotugno, III Divisione Malattie Infettive, Napoli, Italy; Hospital Carlos III, Departamento de Enfermedades Infecciosas, Madrid, Spain; Osseda Region AIDS Center, Odessa, Ukraine.

EuroSIDA Steering Committee

Funding and Acknowledgements are provided by the European Union’s Seventh Framework Programme for research, technological development and demonstration under EuroCoord grant agreement n° 260694. Current support also includes unrestricted grants by Bristol-Myers Squibb, Janssen R&D, Merck and Co. Inc., Pfizer Inc., GlaxoSmithKline LLC. The participation of centres from Switzerland was supported by The Swiss National Science Foundation (Grant 108787).