Blegdamsvej 9, DK-2100

Copenhagen Ø, Denmark

erich.stephen.tusch@regionh.dk

Tel.: 0045 35 45 57 57

# Mortality using raltegravir versus other integrase inhibitors in people with HIV in Europe and Australia



<u>Erich Tusch</u><sup>1</sup>, Lene Ryom<sup>1,2,3</sup>, Christian Hoffmann<sup>4</sup>, Olaf Degen<sup>5</sup>, Robert Zangerle<sup>6</sup>, Huldrych Günthard<sup>7,8</sup>, Ferdinand Wit<sup>9</sup>, Cristina Mussini<sup>10</sup>, Antonella Castagna<sup>11</sup>, Charlotte Martin<sup>12</sup>, Andrea Giacomelli<sup>13,14</sup>, Jörg Janne Vehreschild<sup>15,16,17</sup>, Josip Begovac<sup>18</sup>, Vani Vannappagari<sup>19</sup>, Jim Rooney<sup>20</sup>, Lital Young<sup>21</sup>, Joan Tallada<sup>22</sup>, Justyna Kowalska<sup>23</sup>, Elmar Wallner<sup>6</sup>, Katharina Kusejko<sup>7,8</sup>, Nadine Jaschinski<sup>1</sup>, Jens Lundgren<sup>1</sup>, Lars Peters<sup>1</sup>, Joanne Reekie<sup>1</sup>

<sup>1</sup>CHIP, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; <sup>2</sup>Department of Infectious Diseases, Hvidovre University Hospital, Copenhagen, Denmark; <sup>3</sup>Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; <sup>4</sup>ICH Study Center, Hamburg, Germany; <sup>5</sup>University Clinic Hamburg Eppendorf, Hamburg, Germany; <sup>6</sup>Medical University of Vienna, Vienna, Austria; <sup>7</sup>Department of Infectious Diseases and Hospital Epidemiology, University of Zurich, University of Zurich, Switzerland; <sup>9</sup>AIDS Therapy Evaluation in the Netherlands (ATHENA) cohort, HIV Monitoring Foundation, Amsterdam, the Netherlands; <sup>10</sup>Modena HIV Cohort, Università degli Studi di Modena, Modena, Italy; <sup>11</sup>San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, Milano, Italy; <sup>12</sup>Université Libre de Bruxelles (ULB), CHU Saint-Pierre, Infectious Diseases Department, Brussels, Belgium; <sup>13</sup>Italian Cohort Naive Antiretrovirals (ICONA), Milan, Italy; <sup>14</sup>Department of Biomedical and Clinical Sciences, Ulby, CHU Saint-Pierre, Infectious Diseases, Department, Brussels, Belgium; <sup>13</sup>Italian Cohort Naive Antiretrovirals (ICONA), Milan, Italy; <sup>14</sup>Department of Biomedical and Clinical Sciences, Cologne, Germany; <sup>16</sup>Department of Biomedical and Clinical Sciences, Foster Clogne, Germany; <sup>16</sup>Department II of Internal Medicine, Hematology/Oncology, Goethe University, Frankfurt Am Main, Germany; <sup>18</sup>University Hospital for Infectious Diseases, Zagreb, Croatia; <sup>19</sup>ViiV Healthcare, Research Triangle Park, Durham, NC, USA; <sup>20</sup>Gilead Science, Foster City, CA, USA; <sup>21</sup>Merck Sharp & Dohme, Rahway, NJ, USA; <sup>22</sup>European AIDS Treatment Group, Brussels, Belgium; <sup>23</sup>Hospital for Infectious Diseases in Warsaw, Poland

## Background

- Integrase inhibitors (INSTI) are widely recommended including for in first-line antiretroviral therapy (ART)
- Raltegravir (RAL) was the first INSTI and is well tolerated, has a low potential drugdrug interactions, and can be used in renal failure.
- RAL is recommended for specific populations of people with HIV, namely those with an intolerance to other non-INSTI antiretrovirals, and as salvage therapy for those failing other drug classes without INSTI resistance
- A prior study among ART-naïve people with HIV (1) found higher all-cause mortality for RAL-based first-line ART compared with other regimens, including dolutegravir (adjusted hazard ratios (aHR) 1.49) and cobicistat boosted elvitegravir (aHR 1.86)
- We investigated all-cause mortality between RAL-based ART vs. other INSTI-based ART in the RESPOND cohort consortium among both ART-naïve and treatment experienced individuals

#### Methods

- Participants in the RESPOND cohort who started their first INSTI between 2012 and 2021 were followed until earliest of death, dropout, loss to follow-up, or administrative censoring (2021-12-31)
- Survival was compared between those starting RAL as their first INSTI vs. any other INSTI using Cox proportional hazards regressions:
  - Adjusting for age
  - Estimating average treatment effect weighted by inverse propensity of treatment weights (IPTW), estimated by covariate balancing propensity score regression
- Participants remained in the same group until end of follow-up
- Predictors of starting RAL were estimated by multivariable logistic regression after feature selection by LASSO penalized regression

Table 1: Baseline characteristics

|                                                                            |                          | All Participants<br>N: 20,349 | Other INSTI<br>group<br>n: 16,165 | RAL group<br>n: 4,184 |  |  |  |
|----------------------------------------------------------------------------|--------------------------|-------------------------------|-----------------------------------|-----------------------|--|--|--|
| Age in years (median (IQR))                                                |                          | 47 (38, 54)                   | 47 (38, 55)                       | 48 (39, 54)           |  |  |  |
| Sex/gender                                                                 | Male                     | 15429 (75.8%)                 | 12378 (76.6%)                     | 3051 (72.9%)          |  |  |  |
|                                                                            | Female                   | 4879 (24.0%)                  | 3750 (23.2%)                      | 1129 (27.0%)          |  |  |  |
|                                                                            | Transgender              | 41 (0.2%)                     | 37 (0.2%)                         | 4 (0.1%)              |  |  |  |
| HIV exposure                                                               | MSM                      | 9606 (47.2%)                  | 7743 (47.9%)                      | 1863 (44.5%)          |  |  |  |
| group                                                                      | IDU                      | 2608 (12.8%)                  | 1986 (12.3%)                      | 622 (14.9%)           |  |  |  |
|                                                                            | Heterosexual contact     | 6857 (33.7%)                  | 5444 (33.7%)                      | 1413 (33.8%)          |  |  |  |
|                                                                            | Other/unknown            | 1278 (6.3%)                   | 992 (6.1%)                        | 286 (6.8%)            |  |  |  |
| Time period                                                                | Early (2012-2016)        | 11656 (57.3%)                 | 8312 (51.4%)                      | 3344 (79.9%)          |  |  |  |
|                                                                            | Late (2017-2021)         | 8693 (42.7%)                  | 7853 (48.6%)                      | 840 (20.1%)           |  |  |  |
| ART-experienced pre-baseline                                               |                          | 15745 (77.4%)                 | 12380 (76.6%)                     | 3365 (80.4%)          |  |  |  |
| Reason for                                                                 | Patient/physician choice | 3357 (16.5%)                  | 2693 (16.7%)                      | 664 (15.9%)           |  |  |  |
| discontinuation                                                            | Treatment failure        | 950 (4.7%)                    | 638 (3.9%)                        | 312 (7.5%)            |  |  |  |
| of prior ART                                                               | Treatment simplification | 2972 (14.6%)                  | 2824 (17.5%)                      | 148 (3.5%)            |  |  |  |
| regimen                                                                    | Toxicity                 | 3915 (19.2%)                  | 2780 (17.2%)                      | 1135 (27.1%)          |  |  |  |
|                                                                            | Unknown                  | 1960 (9.6%)                   | 1376 (8.5%)                       | 584 (14.0%)           |  |  |  |
|                                                                            | Other                    | 3455 (17.0%)                  | 2751 (17.0%)                      | 704 (16.8%)           |  |  |  |
| First INSTI                                                                | Bictegravir              | 1768 (8.7%)                   | 1768 (10.9%)                      | 0 (0.0%)              |  |  |  |
|                                                                            | Cabotegravir             | 25 (0.1%)                     | 25 (0.2%)                         | 0 (0.0%)              |  |  |  |
|                                                                            | Dolutegravir             | 10962 (53.9%)                 | 10962 (67.8%)                     | 0 (0.0%)              |  |  |  |
|                                                                            | Elvitegravir             | 3410 (16.8%)                  | 3410 (21.1%)                      | 0 (0.0%)              |  |  |  |
|                                                                            | Raltegravir              | 4184 (20.6%)                  | 0 (0.0%)                          | 4184 (100.0%)         |  |  |  |
| Figure 1: Proportion of cumulative expecure per calendar year of follow up |                          |                               |                                   |                       |  |  |  |





References: 1. Trickey A et al. Associations of modern initial antiretroviral drug regimens with all-cause mortality in adults with HIV in Europe and North America: a cohort study. The Lancet HIV. 2022;9(6):e404-e13.

Figure 2: Cumulative risk of mortality



Covariate balancing propensity score covariates: age, sex/gender, geographic region, race/ethnicity, HIV exposure group, time period (2012-2016 vs. 2017-2021), indication of pregnancy at baseline, CD4 cell count, CD4 nadir, HIV viral load, prior AIDS diagnosis, AIDS-defining malignancy, Non-AIDS-defining malignancy, use of chemotherapy near baseline, TB history, number of prescribed medications, liver fibrosis score, hepatitis C status, end-stage liver disease, end-stage renal disease, hypertension, dyslipidemia, diabetes mellitus, cardiovascular disease, ART-naïve status at baseline, number of previously exposed antiretrovirals, and each individual reason for discontinuation of prior ART regimen: patient/physician choice, treatment failure, treatment simplification, toxicity, unknown, and other (not including pregnancy-related).

Covariates excluded from multivariable logistic regression: history of TB, ART-naïve, and unknown reason for discontinuation of pre-baseline ART regimen

#### Results

- See table 1 for baseline characteristics and figure 1 for the proportion of cumulative exposure per calendar year to RAL-based ART, other-INSTI-based ART, and non-INSTI based ART
- See table 2 for deaths, follow-up time, and mortality rates in the full time period, early (2012-2016) and late (2017-2021)
- Survival analysis: mortality after starting RAL vs. other INSTI
  - Starting RAL as first INSTI was associated with increased mortality when controlling for age: **aHR 1.43; 95%Cl 1.25, 1.65** (figure 2A)
  - After applying IPTW, there was no difference in mortality between starting RAL and other INSTIs: **HR 1.13; 95%CI 0.93, 1.34** (figure 2B)
    - Among ART-naïve: HR 1.20; 95%CI 0.67, 2.03
- Multivariable logistic regression: predictors of starting RAL
  - CD4 nadir (≤200 cells/mm³ vs. >500 aOR 1.41; 95%Cl 1.04, 1.90)
  - HIV viral load (>100,000 copies/mL vs. ≤50 aOR 1.3; 95%Cl 1.10, 1.55)
  - End-stage renal disease (requiring dialysis for >3 months and/or kidney transplantation) (aOR 2.58; 95% CI 1.58, 4.20)
  - Cardiovascular disease (aOR 1.57; 95%Cl 1.30, 1.90)
  - Hepatitis C (HCV) antibody and/or RNA positive status (vs. anti-HCV negative aOR 2.07; 95%CI 1.81, 2.36)

Table 2: Person-years of follow-up (PYFU) and age-standardized mortality rate per 1,000 PYFU per time period

|  | Time Period          | First INSTI | Deaths | PYFU   | PYFU Median<br>(IQR) | Age-standardized mortality rate (95%CI) |
|--|----------------------|-------------|--------|--------|----------------------|-----------------------------------------|
|  | Full<br>(2012-2021)  | All         | 938    | 94,677 | 4.8 (2.9, 6.4)       | 10.1 (9.4, 10.7)                        |
|  |                      | RAL         | 312    | 24,480 | 4.6 (2.7, 6.1)       | 12.7 (11.3, 14.1)                       |
|  |                      | Other INSTI | 626    | 70,197 | 6.2 (3.7, 8.1)       | 9.1 (8.4, 9.9)                          |
|  | Early<br>(2012-2016) | All         | 229    | 19,875 | 1.5 (0.8, 2.4)       | 11.8 (10.3, 13.4)                       |
|  |                      | RAL         | 139    | 8,844  | 2.7 (1.5, 3.8)       | 15.6 (13.1, 18.5)                       |
|  |                      | Other INSTI | 90     | 11,031 | 1.3 (0.7, 1.9)       | 8.6 (6.9, 10.5)                         |
|  | Late<br>(2017-2021)  | All         | 709    | 74,802 | 4.5 (2.7, 5.0)       | 9.6 (8.9, 10.3)                         |
|  |                      | RAL         | 173    | 15,636 | 4.7 (3.4, 5.0)       | 11.0 (9.4, 12.8)                        |
|  |                      | Other INSTI | 536    | 59,166 | 4.5 (2.6, 5.0)       | 9.2 (8.5, 10.0)                         |

### Limitations

Estimation of average treatment effect (IPTW-weighted Cox regression) is still vulnerable to uncontrolled confounding

- While covariate balance between RAL and other INSTI groups was very good, not all covariates were balanced
- There may be other unmeasured or unknown confounders that could not be accounted for, e.g. socioeconomic status and current drug or alcohol abuse

## Conclusions

While there was an age-adjusted association between starting RAL and mortality, this

was no longer the case after accounting for confounding at baseline using IPTW