
Some basics on R
Magnus Fontes

Copenhagen 2017

R Markdown

The documentation for the course is beeing produced using Markdown. Markdown is a simple formatting
syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see
http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the
output of any embedded R code chunks within the document.

Online Help

We assume that you have R as well as R Studio installed. You must first download R from the CRAN website
https://cran.r-project.org/ and then R studio from the RStudio website https://www.rstudio.com/

Then the most important thing once you have started R through for example RStudio is to know how to get
help

Again at https://cran.r-project.org/ you find R tutorials.

Often you can find useful information simply by googling a keyword (like the name of a command) followed
by R. Fora for programmers http://stackoverflow.com/.

For statistical questions check out Crossvalidated at http://stats.stackexchange.com.

And for bioinformatics and biostatistics https://www.bioconductor.org/

Built In Help

In the R command line you simply type help.start() to start the general help.

?x or help(x) to get the R documentation around the function x. In particular the examples at the end
of the help text often give enough information to understand how to use a function. You can also type
example(x).

The command apropos(x) lists all functions containing the string “x”.

For a fuzzy help search try ??x

R, as well as R packages come with example datasets. To list the available example datasets type data().

Starting and quitting R

Double-click on the R Studio icon (or the R icon to only open R).

To quit your R session type q() in the command line or select quit R Studio in the dropdown file menu in R
Studio.

1

http://rmarkdown.rstudio.com
https://cran.r-project.org/
https://www.rstudio.com/
https://cran.r-project.org/
http://stackoverflow.com/
http://stats.stackexchange.com
https://www.bioconductor.org/

The working directory

The working directory is to where R by default directs input and output when you e.g. use commands like
source and dump to create R files that hold the commands neccessary to recreate R objects or save and
load to directly save and load R objects.

You can find your current working directory:

getwd()

[1] "C:/Users/Magnus/Documents/R/RMarkdown"

and you can change your working directory:

setwd("C:/Users/Magnus/Documents/R/RMarkdown")
getwd()

[1] "C:/Users/Magnus/Documents/R/RMarkdown"

Creating vectors

Create vectors by concatenation with the function c().

Creating a vector containing the natural numbers 1 to 10 in increasing order:

x <- c(1:10)
x

[1] 1 2 3 4 5 6 7 8 9 10

Or by the quick command

1:10

[1] 1 2 3 4 5 6 7 8 9 10

Sampling in general

To randomly permute a vector:

x

[1] 1 2 3 4 5 6 7 8 9 10

sample(x)

[1] 9 5 1 4 3 7 6 8 2 10

This is useful for example if you want to randomly partition a cohort into two groups that will serve as case
and control.

2

Assume that we have 40 patients. We then number them from 1 to 40:

options(width=50)
patient.numbers <- 1:40
patient.numbers

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
[16] 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
[31] 31 32 33 34 35 36 37 38 39 40

The command options(width=50) is there to get a nice layout.

If we randomly want to select half of them to undergo a treatment we do this by randomly selecting 20:

sample(patient.numbers,size=20)

[1] 27 33 1 24 5 17 29 37 25 6 26 36 34 20 14
[16] 16 32 23 15 18

Sampling from a predefined distribution

Creating a random vector of size 10 drawn from a normal distribution (mean=0 and standard deviation
sd=1):

y <- rnorm(10, mean = 0, sd = 1)
y

[1] 0.5461259 0.4906653 0.7251091 -0.5567929
[5] -0.5719644 1.7191916 1.1771126 -0.5030103
[9] -1.3031281 1.0462450

summary is used to get some basic statistics on a given sample:

summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.3030 -0.5433 0.5184 0.2770 0.9660 1.7190

But a quantile-quantile (qq) plot might give more:

qqnorm(y)

3

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

0
0.

0
0.

5
1.

0
1.

5
Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Sampling with replacement

Given a vector:

x

[1] 1 2 3 4 5 6 7 8 9 10

We sample with replacement:

sample(x, replace=TRUE)

[1] 6 2 9 3 9 10 6 1 3 6

Bootstrapping is an important technique for understanding e.g. the robustness of inferences. It is in general
used to learn as much as possible about an unknown probability distribution that we have sampled from. It
is based on resampling many times. To perform it we need flow control constructs.

Control Flow

These are the basic control-flow constructs of the R language. They function in much the same way as control
statements in any Algol-like language (like Python, C++, Julia etc). They are all reserved words.

4

if(cond) expr

if(cond) cons.expr else alt.expr

for(var in seq) expr

while(cond) expr

repeat expr

break

next

Bootstrapping

We create a sample vector drawing from a normal distribution:

x <- rnorm(1000)

We set up a numerical vector, named m.d of length 10000:

m.d <- numeric(10000)

And then we store the mean values of bootstrapped samples in m.d

for (i in 1:10000) m.d[i] <- mean(sample(x, replace=TRUE))

We can now plot a histogram for the meanvalues of the bootstrapped samples

hist(m.d)

5

Histogram of m.d

m.d

F
re

qu
en

cy

−0.15 −0.10 −0.05 0.00 0.05 0.10

0
50

0
10

00
20

00

This is an approximation of a sample distribution based on bootstrapping one particular sample that can be
used in particular to asses the variation, or standard deviation, in our data. This is important when we for
example construct confidence intervals.

We can compare our bootstrap approximation with a direct approximation of the mean value statistic for
normally distributed data:

m.d.direct <- numeric(10000)
for (i in 1:10000) m.d.direct[i] <- mean(rnorm(1000))

6

hist(m.d.direct)

Histogram of m.d.direct

m.d.direct

F
re

qu
en

cy

−0.15 −0.10 −0.05 0.00 0.05 0.10

0
50

0
10

00
15

00
20

00

And we compare the two distributions with a qqplot

qqplot(m.d.direct, m.d)

7

−0.10 −0.05 0.00 0.05 0.10

−
0.

15
−

0.
05

0.
00

0.
05

m.d.direct

m
.d

We note that the bootstrapped and the directly sampled distributions are very similar and that the standard
deviation estimated by bootstrapping provides a good estimate of the empirical standard deviation:

mean(m.d.direct)

[1] -0.0006580515

mean(m.d)

[1] -0.02536859

sd(m.d.direct)

[1] 0.03179799

sd(m.d)

[1] 0.03137605

8

The standard deviation is well estimated by bootstrapping, but the mean is highly influenced by outliers.
This can be dealt with by trimming the means. Using the same underlying sample x:

m.d.t <- numeric(10000)

for (i in 1:10000) m.d.t[i] <-
mean(sample(x, replace=TRUE), trim=0.003)

m.d.t.direct <- numeric(10000)
for (i in 1:10000) m.d.t.direct[i] <-

mean(rnorm(1000), trim=0.003)

mean(m.d.t.direct)

[1] 0.0005068138

mean(m.d.t)

[1] -0.02407681

sd(m.d.t.direct)

[1] 0.03173242

sd(m.d.t)

[1] 0.03161846

And we compare them in a qqplot

qqplot(m.d.t.direct, m.d.t)

9

−0.10 −0.05 0.00 0.05 0.10

−
0.

15
−

0.
05

0.
05

0.
10

m.d.t.direct

m
.d

.t

Robust non parametric methods

Concerning estimating a central tendency in a dataset, the median is a more robust statistic than the mean.
Look at standard available distributions by typing help(distributions) on the R command line.

Exercise: Redo the analyses and comparisons that we have made above using other underlying distributions
to create the samples.

For the normal distribution the mean is a very good choice, but below we use the median on the same
underlying sample x:

med.d <- numeric(10000)

for (i in 1:10000) med.d[i] <-
median(sample(x, replace=TRUE))

med.d.direct <- numeric(10000)
for (i in 1:10000) med.d.direct[i] <-

median(rnorm(1000))

10

mean(med.d.direct)

[1] -0.0001121217

mean(med.d)

[1] 0.0009193478

sd(med.d.direct)

[1] 0.03922468

sd(med.d)

[1] 0.04140167

And we compare them in a qqplot

qqplot(med.d.direct, med.d)

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

−
0.

15
−

0.
05

0.
05

med.d.direct

m
ed

.d

11

Plotting a binomial distribution and compare with Poisson

p <- 0.1
n <- 10
k <- seq(from=0,to=n,by=1)

And the plot

plot(k,dbinom(k,n,prob=p))
lines(lowess(k,dbinom(k,n,prob=p),f=0.01), col="blue")
lines(lowess(k,dpois(k,lambda=n*p),f=0.01), col="red")

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

k

db
in

om
(k

, n
, p

ro
b

=
 p

)

Ladislaus Bortkiewicz data set on preussian officers killed by horsekicks

horsekicks <- read.csv("~/R/RMarkdown/horsekicks.csv")
typeof(horsekicks)

[1] "list"

12

class(horsekicks)

[1] "data.frame"

Writing datafiles from R back to the working directory:

kicks.matrix <- as.matrix(horsekicks)
typeof(kicks.matrix)

[1] "integer"

class(kicks.matrix)

[1] "matrix"

kicks.vector <- as.vector(kicks.matrix)
typeof(kicks.vector)

[1] "integer"

class(kicks.vector)

[1] "integer"

write(kicks.vector, file="kicks.vector")

Ladislaus Bortkiewicz data set on preussian officers

table.kicks <- table(kicks.vector)
table.kicks

kicks.vector
0 1 2 3 4
133 88 32 11 2

Comparison with Poisson

options(width=50)
table(length(kicks.vector)*

dpois(k,lambda=mean(kicks.vector)))

13

##
1.43471924950718e-06 1.97738507963166e-05
1 1
0.000245277714022705 0.00270440919917262
1 1
0.026091243154712 0.215759710232748
1 1
1.48684152647438 8.19688800087428
1 1
33.8917959828895 93.4219454036126
1 1
128.757707136585
1

Plotting using the lowess() function

plot(k,length(kicks.vector)*
dpois(k,lambda=mean(kicks.vector)))

lines(lowess(k,length(kicks.vector)*
dpois(k,lambda=mean(kicks.vector)),

f=0.01), col="red")

0 2 4 6 8 10

0
20

40
60

80
10

0

k

le
ng

th
(k

ic
ks

.v
ec

to
r)

 *
 d

po
is

(k
, l

am
bd

a
=

 m
ea

n(
ki

ck
s.

ve
ct

or
))

14

Histogram of Bortkiewicz data with Poisson approximation

hist(kicks.vector)
lines(lowess(k,length(kicks.vector)*

dpois(k,lambda=mean(kicks.vector)),
f=0.01), col="red")

Histogram of kicks.vector

kicks.vector

F
re

qu
en

cy

0 1 2 3 4

0
20

40
60

80
12

0

We compute the mean and the variance of the sample set

mean(kicks.vector)

[1] 0.7255639

var(kicks.vector)

[1] 0.7810044

We will assume that you have the files leukemia.RData and leukemiaSA.RData in your working directory.
We load and check the class of the loaded objects:

load("leukemia.RData")
class(leukemia)

[1] "matrix"

15

load("leukemiaSA.RData")
class(leukemiaSA)

[1] "data.frame"

Matrices

A matrix is a two dimensional array.

We create a random matrix of dimension 132 times 22282, where all the entries are drawn independently
from the normal distribution with mean value equal to 0 and standard deviation equal to 1:

A = matrix(rnorm(132*22282),nrow=132,ncol=22282)

Data Frames

For a vector or a matrix in R all elements have to be of the same type (numeric, integer, character, logical,
etc).

A list in R is a vector where the elements are R objects that are allowed to be of different types.

A dataframe is a two dimensional list where columns have there own names and are allowed to be of different
types and we use the function data.frame to construct them.

Principal Components Analysis

PCA is performed using the function prcomp

leukemiaPCs = prcomp(leukemia, center=TRUE,scale=FALSE)
plot(leukemiaPCs$x[,1], leukemiaPCs$x[,2])

16

−60 −40 −20 0 20 40 60

−
30

−
10

0
10

20
30

leukemiaPCs$x[, 1]

le
uk

em
ia

P
C

s$
x[

, 2
]

We now color according to leukemia type. An annotation that is one of the columns (variables) in the data
frame leukemiaSA. leukemiaSA has the same number of rows (cases) as the leukemia data frame.

type = leukemiaSA[,"Leukemia.Type"]
plot(leukemiaPCs$x[,1],leukemiaPCs$x[,2],col

=type,pch=20,cex=2)

17

−60 −40 −20 0 20 40 60

−
30

−
10

0
10

20
30

leukemiaPCs$x[, 1]

le
uk

em
ia

P
C

s$
x[

, 2
]

PCA separates the samples in two distinct groups, B-ALL and T-ALL.

We now make a screeplot of the loadings for the PCs:

screeplot(leukemiaPCs)

18

leukemiaPCs

V
ar

ia
nc

es

0
10

0
20

0
30

0
40

0
50

0

And compare with a screeplot of the loadings for our random matrix A:

APCs = prcomp(A, center=TRUE,scale=FALSE)
screeplot(APCs)

19

APCs

V
ar

ia
nc

es

0
50

10
0

15
0

And a PCA plot of the random matrix A:

plot(APCs$x[,1], APCs$x[,2])

20

−30 −20 −10 0 10 20 30

−
40

−
20

0
20

APCs$x[, 1]

A
P

C
s$

x[
, 2

]

We now create a distance matrix using a Minkowski l–p distance:

D <-
dist(leukemia,method=

"minkowski",diag=FALSE,upper=FALSE,p=3)

And apply the function cmdscale performing classical multidimensional scaling

MDSPCs <-
cmdscale(D, k = 2, eig = FALSE, add =

FALSE, x.ret = FALSE)

And make a scatterplot of the result:

plot(MDSPCs[,1], MDSPCs[,2], col=type, pch=20,cex=2)

21

−5 0 5 10 15

−
5

0
5

10

MDSPCs[, 1]

M
D

S
P

C
s[

, 2
]

Loading a package

We assume that we have downloaded and installed the package tSNE.

We can then load the package Rtsne into the active memory using the library function:

library("Rtsne", lib.loc="~/R/win-library/3.1")

We perform tSNE

tsne_out <- Rtsne(leukemia)
type=leukemiaSA[,"Leukemia.Subtype"]
plot(tsne_out$Y, col=type, pch=20,cex=2)

22

−5 0 5 10

−
5

0
5

tsne_out$Y[,1]

ts
ne

_o
ut

$Y
[,2

]

We create a random matrix with N samples and M normally distributed random
variables

N=132
M=22282
random.matrix <- matrix(rnorm(N*M,mean=0,sd=1), N, M)

We threshold the matrix

random.matrix[random.matrix < 2.4] = 2.4
prcomp.output <- prcomp(random.matrix)
plot(prcomp.output$x, col='blue', pch=20,cex=2)

23

0 2 4 6

−
6

−
4

−
2

0
2

PC1

P
C

2

And we compare with tSNE

tsne.output <- Rtsne(random.matrix)
plot(tsne.output$Y, col='blue', pch=20,cex=2)

24

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

tsne.output$Y[,1]

ts
ne

.o
ut

pu
t$

Y
[,2

]

25

	R Markdown
	Online Help
	Built In Help
	Starting and quitting R
	The working directory
	Creating vectors
	Sampling in general
	
	Sampling from a predefined distribution
	But a quantile-quantile (qq) plot might give more:
	Sampling with replacement
	Control Flow
	Bootstrapping
	
	
	
	
	
	
	
	
	Robust non parametric methods
	
	
	
	Plotting a binomial distribution and compare with Poisson
	And the plot
	Ladislaus Bortkiewicz data set on preussian officers killed by horsekicks
	Writing datafiles from R back to the working directory:
	Ladislaus Bortkiewicz data set on preussian officers
	Comparison with Poisson
	Plotting using the lowess() function
	Histogram of Bortkiewicz data with Poisson approximation
	Matrices
	Data Frames
	Principal Components Analysis
	
	
	
	
	
	
	
	
	Loading a package
	We perform tSNE
	We create a random matrix with N samples and M normally distributed random variables
	We threshold the matrix
	And we compare with tSNE

