Blegdamsvej 9, DK-2100 Copenhagen Ø, Denmark Tel.: 0045 50 17 80 26 alisa.timiryasova@regionh.dk

CD4 Cell Count Trends After Common Cancers in People With HIV: A Multicohort Collaboration

Alisa Timiryasova¹, L. Greenberg¹, P. Domingo², P.E. Tarr³, A. Egle⁴, C. Martin⁵, C. Mussini⁶, F. Wit⁷, A. Cingolani⁸, J.J. Vehreschild^{9,10,11}, A Castagna¹², K. Petoumenos ¹³, C. Sabin ¹⁴, A Borges ^{1,15}, W. El-Sadr ¹⁶, F. Bonnet ¹⁷, J. Lundgren ¹, A S. Hosein ¹⁸, C. Carlander ¹⁹, A. Amstutz ³, K. Grabmeier-Pfistershammer ²⁰, H. Garges ²¹, A. Marongiu²², L. Young ²³, L. Peters ¹, L. Ryom ^{1,24,25} for the D:A:D and RESPOND Study Groups

¹CHIP, Rigshospitalet, University of Copenhagen, Denmark; ² EuroSIDA cohort, Hospital de la Santa Creu i Sant Pau, Spain; ³ Swiss HIV Cohort Study (SHCS), University of Basel, Switzerland; ⁴ 3rd Medical Department, Paracelsus Medical University Salzburg; ⁵ CHU Saint-Pierre, Centre de Recherche en Maladies Infectieuses a.s.b.l., Belgium; ⁶ Modena HIV Cohort, Università degli Studi di Modena, Italy; ⁷ AIDS Therapy Evaluation in the Netherlands (ATHENA) cohort, HIV Monitoring Foundation, the Netherlands; ⁸ Italian Cohort Naive Antiretrovirals (ICONA), Fondazione Policlinico A. Gemelli, IRCCS, Italy; 9 Department I of Internal Medicine, Faculty of Medicine and University Hospital, Germany; 10 German Centre for Infection Research, Partner Site Bonn-Cologne, Germany; 11 Department II of Internal Medicine, Hematology/Oncology, Goethe University, Germany; 12 San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, Italy; 13 The Australian HIV Observational Database (AHOD), UNSW, Australia; 14 Centre for Clinical Research, Epidemiology, Modelling and Evaluation (CREME), Institute for Global Health, University College London, UK; 15 Department of Infectious Disease Immunology, Center for Vaccine Research, Statens Serum Institut; 16 CPCRA (USA), CAP-Columbia University and Harlem Hospital, USA; 17 CHU de Bordeaux and Bordeaux University, BPH, INSERM U1219, France; 18 European AIDS Treatment Group, Belgium; 19 Karolinska University of Vienna, Austria; 21 ViiV Healthcare, Global Medical, Durham, USA; 22 Gilead Sciences, Real World Evidence Virology department, UK; ²³ Merck Sharp & Dohme, Global Medical Affair, Rahway, USA; ²⁴ Department of clinical medicine, University of Copenhagen, Denmark; ²⁵ Department of Infectious Diseases, Hvidovre University Hospital, Denmark

BACKGROUND

- Whilst opportunistic infection prophylaxis is recommended to all individuals with HIV and CD4 <200 cells/μL, those undergoing chemo- or radiotherapy are advised to commence prophylaxis regardless of the CD4 level according to the EACS guidelines (1)
- These recommendations are based on historical data predating modern antiretroviral therapy (ART). Therefore, there is a pressing need to reevaluate CD4 count trajectories during cancer treatment in the context of contemporary ART

OBJECTIVES

- To assess CD4 trends before and after the most commonly occurring cancers in individuals with HIV and the proportions with CD4 decline to below 200 cells/µL after a cancer
- To assess potential risk factors associated with a decline in CD4 cell count to below 200 cells/µL after a cancer diagnosis

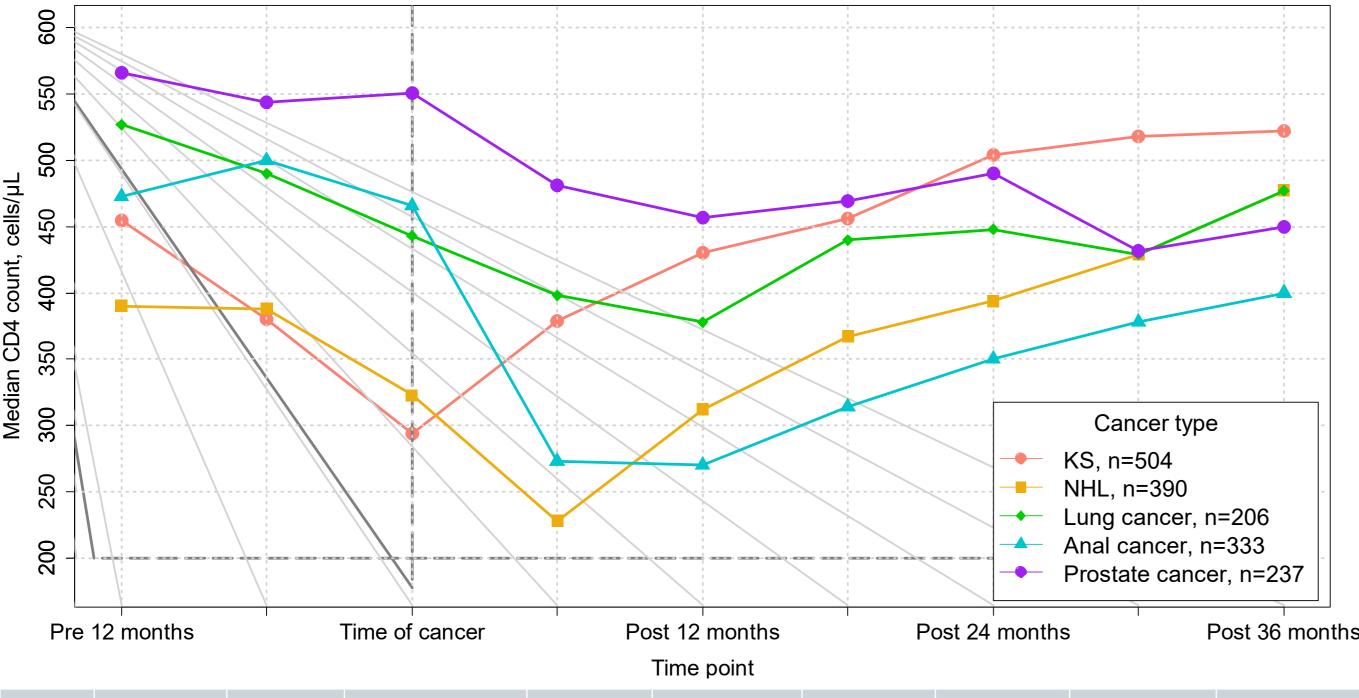
METHODS

- We included participants from the D:A:D and RESPOND cohorts with one of the most commonly occurring cancers (Kaposi's sarcoma (KS), non-Hodgkin lymphoma (NHL), lung, anal, or prostate cancer), alive for >6 months after cancer diagnosis, and had a minimum of two CD4 counts within 6-12 months after cancer diagnosis
- Participants were followed from the latest of cohort enrolment and 1 Jan 2006 (D:A:D)/2012 (RESPOND) until death, last follow-up (FU), or cohort censoring (D:A:D 1 Feb 2016; RESPOND 31 Dec 2021)
- Median CD4 count at the time of cancer diagnosis and the proportion of participants with a CD4 count decline below 200 cells/μL (up to three years after cancer diagnosis) was calculated, and mixed effects logistic regression models assessed predictors of the decline
- Sensitivity analysis evaluated death as a competing risk of CD4 decline <200 cells/µL after cancer diagnosis

Characteristics at time of cancer diagnosis

Table 1. Characteristics at time of cancer diagnosis												
	Kaposi's sarcoma (n=504)		Non-Hodgkin lymphoma (n=390)		Lung cancer (n=206)		Anal cancer (n=333)		Prostate cancer (n=237)			
	n	(%)	n	(%)	n	(%)	n	(%)	n	%		
Sex/Gender												
Male	470	(93.3)	326	(83.6)	152	(73.8)	296	(88.9)	237	(100.0)		
Ethnicity/Race												
White	214	(42.5)	213	(54.6)	137	(66.5)	215	(64.6)	171	(72.2)		
Black	25	(5.0)	27	(6.9)	2	(1.0)	6	(1.8)	8	(3.4)		
Cancer stage												
Localised	75	(15)	43	(11.0)	78	(37.9)	218	(65.5)	143	(60.3)		
Disseminated	41	(8)	63	(16.1)	85	(41.3)	44	(13.2)	30	(12.7)		
Unknown	388	(76.9*)	284	(72.8*)	43	(20.9)	71	(21.3)	64	(27)		
ART experienced	320	(63.5)	325	(83.3)	194	(94.2)	319	(95.8)	229	(96.6)		
	Median	IQR	Median	IQR	Median	IQR	Median	IQR	Median	IQR		
Age, years	43	(36, 51)	48	(40 <i>,</i> 55)	57	(50 <i>,</i> 63)	52	(46 <i>,</i> 58)	63	(59, 69)		
CD4 nadir, cells/mm³	170	(48 <i>,</i> 300)	160	(68, 272)	141	(43 <i>,</i> 252)	113	(26 <i>,</i> 225)	178	(80,276)		
Baseline CD4, cells/mm³	300	(106, 469)	328	(190, 499)	460	(310, 701)	484	(299, 682)	559	(410 <i>,</i> 725)		
* Cancer stage for KS and NHL was not collected in D:A:D												

RESULTS

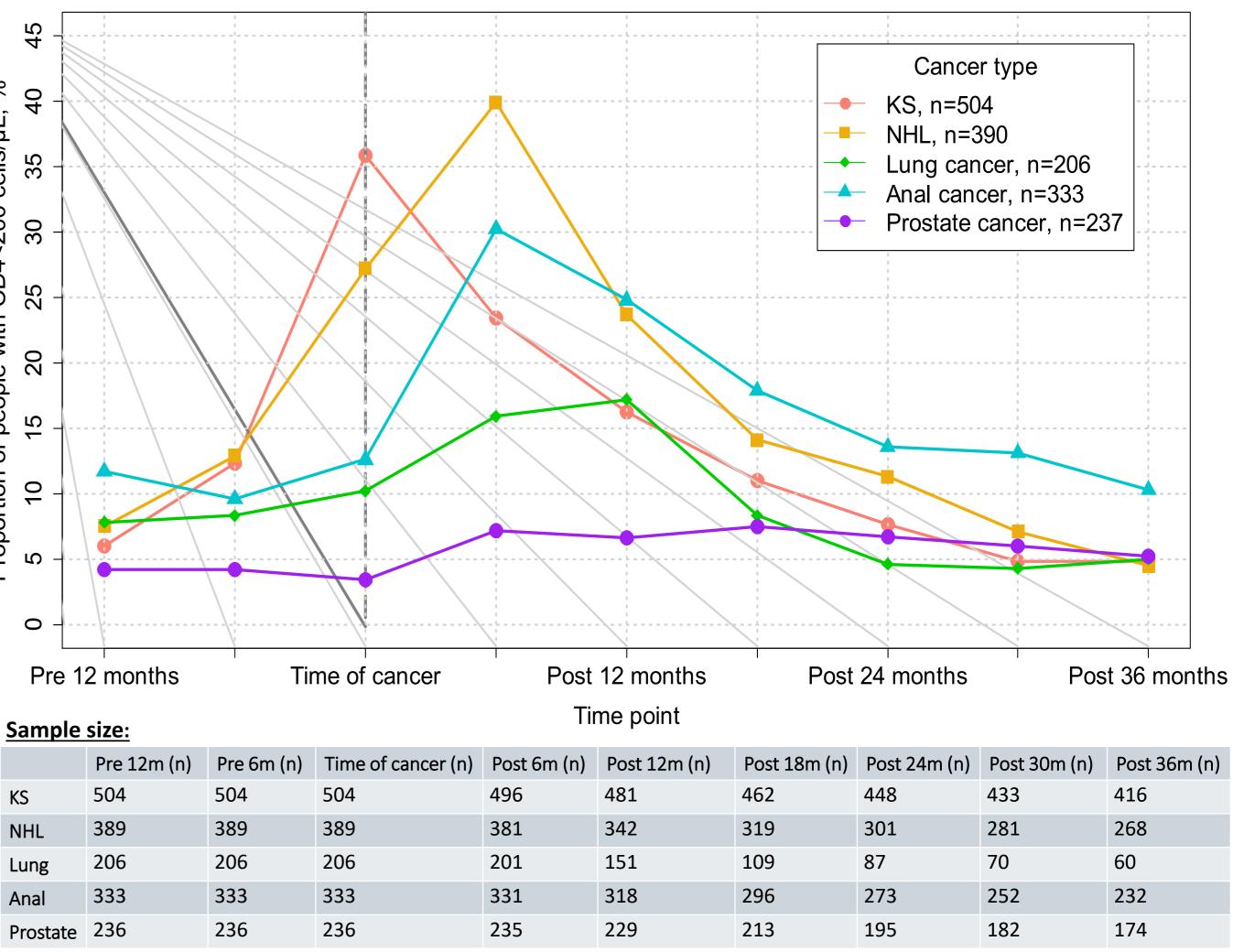

- In all, 1,670 persons (KS: 504, NHL: 390, lung: 206, anal: 333, prostate cancer: 237) with 9,597 person-years of follow-up (FU) after cancer diagnosis were included, baseline characteristics are shown in **Table 1**
- Median FU time was 5.3 years, [Interquartile Range (IQR) 2.3-8.4] (KS: 7.0) [4.0-9.3], NHL: 5.5 [2.2-8.8], anal: 5.1 [2.6-8.0], prostate: 4.9 [2.8-7.7], lung: 1.7 [0.9-3.9])
- We excluded 815 participants due to the lack of two CD4 counts within 6-12 months after cancer diagnosis; 50% died within 12 months after diagnosis, and 50% had no CD4 measurements in their HIV clinics

MEDIAN CD4 COUNT AFTER CANCER DIAGNOSIS

ViiVHealthcare, Merck & Co Inc., Janssen Pharmaceuticals.

The median CD4 count at cancer diagnosis varied depending on the type of cancer: lowest for KS, highest for prostate cancer (KS: 294 cells/µL [IQR 105-474], NHL: 323 [163-495], lung: 443 [290-664], anal: 466 [270-680], prostate: 551 [407-696]) (Figure 1)

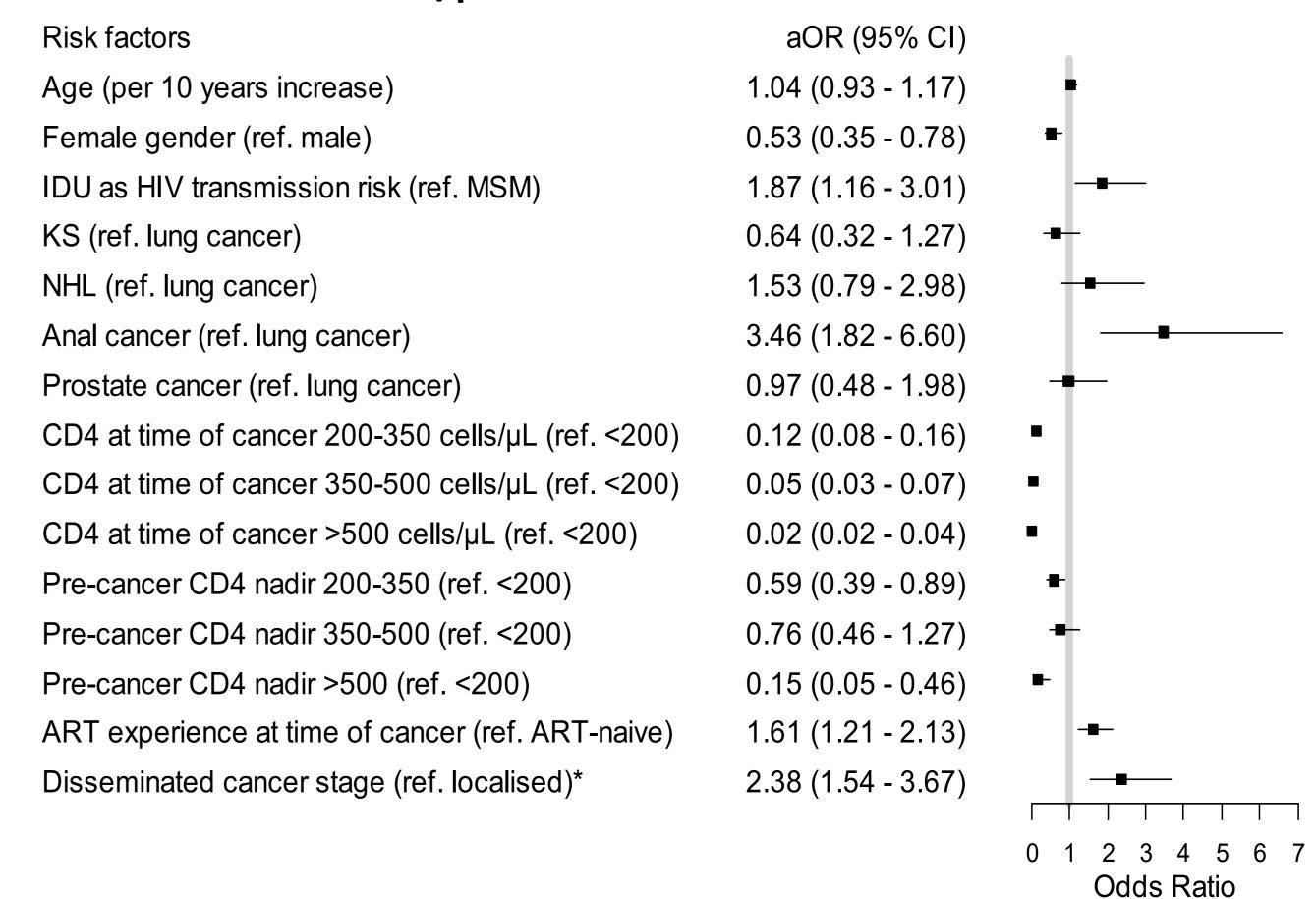
Figure 1. Median CD4 count trends before/after cancer diagnosis



Pre 12 months Time of can		Time of cancer	Po	St 12 months	P	Post 36 months						
	Time point											
	Pre 12m (n)	Pre 6m (n)	Time of cancer (n)	Post 6m (n)	Post 12m (n)	Post 18m (n)	Post 24m (n)	Post 30m (n)	Post 36m (n)			
KS	234	279	482	481	437	416	400	374	343			
NHL	262	281	362	371	319	291	270	255	225			
Lung	172	173	188	198	138	91	77	64	51			
Anal	282	281	297	312	283	246	235	213	182			
Prostate	208	214	210	222	205	187	174	155	146			

PROPORTION OF PARTICIPANTS WITH A CD4 COUNT BELOW 200 CELLS/µL

The highest proportion of individuals with a CD4 count below 200 cells/µL was at time of cancer diagnosis for KS (36%) and at 6 months after cancer diagnosis in those with NHL (40%) and anal cancer (30%) (Figure 2)


Figure 2. Proportion of people with CD4<200 cells/uL after cancer

RISK FACTORS FOR CD4 COUNT BELOW 200 CELLS/µL AFTER CANCER

- In adjusted models, higher CD4 counts at the time of cancer diagnosis were associated with lower odds of CD4 decline to below 200 cells/µL after cancer
- Participants with anal cancer had 3,5 times higher odds of having a CD4 decline below 200 cells/µL compared to those with lung cancer
- Other predictors of having CD4 decline below 200 cells/µL included disseminated cancer stage, male gender and injection drug use as HIV transmission risk (Figure 3)
- Results of sensitivity analysis were consistent with the results of the primary regression model

Figure 3. Adjusted Odds Ratios (aOR) (95% Confidence Interval) for CD4 decline <200 cells/µL after cancer

Model was additionally adjusted for ethnicity, time-updated smoking (with non-significant results) *Cancer stage was available only for lung, anal and prostate cancer

LIMITATIONS

- Limited data about the type of cancer treatment (unavailable for 60% of participants) and lack of data about using of opportunistic infections prophylaxis
- As participants without two CD4 measurements within 6-12 months postcancer diagnosis were excluded, we have introduced some selection bias, and our findings may, therefore predominantly represent outcomes in participants who survived >6 months after cancer and had available data on CD4 counts

CONCLUSIONS

- 1) Dynamics and severity of immunosuppression after cancer varied across cancer type
- 2) In people who survived >6 months after cancer and had longitudinal data of CD4 after cancer diagnosis, rates of CD4 below 200 cells/µL after cancer were high for NHL and anal cancer, and low for KS and prostate cancers
- 3) Higher CD4 count at cancer diagnosis was associated with lower odds of CD4 decline below 200 cells/µL after cancer
- 4) A significant proportion of people with HIV and cancer did not have CD4 count measurements in HIV clinics after cancer diagnosis
- 5) Considering use of opportunistic infection prophylaxis in people with HIV after cancer diagnosis could be more individualised in settings where regular CD4 monitoring is available

References: 1) EACS 2024 guidelines