

TRENDS IN CANCER INCIDENCE IN DIFFERENT MODERN ART-ERAS

AMONG PEOPLE LIVING WITH HIV (PLWH)

¹Centre for Clinical Research, Epidemiology, Modelling and Evaluation, Institute for Global Health, University College London, UK; ²Centre of Excellence for Health, University of Zurich, Switzerland; ⁵Swiss HIV Cohort, Switzerland; ⁶Division of Infectious Diseases and Hospital Epidemiology, University of Zurich, Switzerland; ⁷Italian Cohort, Study, Royal Free HIV Cohort, Study, Royal Free HIV Cohort, University of Zurich, Switzerland; ¹²Chu Ge Bordeaux and Bo

BACKGROUND

• Cancer is one of the leading causes of death amongst PLWH [1-2].

Johann Wolfgang Goethe-University Hospital, Germany; 24ViiV Healthcare, RTP, USA; 25Gilead science, Foster City, USA; 26European AIDS Treatment Group.

- Whilst the incidences of AIDS defining cancers (ADCs) have significantly decreased since the mid-1990s with combination antiretroviral therapy (ART), studies have shown mixed results on changes in the incidence of non-ADCs (NADCs) [3-5].
- There are limited international data assessing cancer trends across different contemporary ART eras.

METHODS

- Participants from the D:A:D and RESPOND cohort collaborations were followed from baseline (defined in D:A:D as the latest of study entry or 1 Jan 2006 and in RESPOND as the latest of local cohort enrolment or 1 Jan 2012) until earliest of first cancer (excluding precancers, non-melanoma skin cancers, and relapse), final follow-up, or 1 Feb 2016 in D:A:D or 31 Dec 2019 in RESPOND.
- For individuals with cancer prior to baseline, cancer during followup was only counted if the cancer type was different from the one which occurred prior to baseline.
- Age-standardized (according to the age distribution of the combined D:A:D and RESPOND cohorts in 2015) cancer incidence rates (IRs) were calculated from 2006-2019.
- Poisson regression was used to assess temporal trends.

		Overall		
Table 1: Baselin	e characteristics	n	(%)	
		66636	(100)	
Gender	Male	49425	(74.2)	
P41:	White	37193	(55.8)	
Ethnicity	Black	6505	(9.8)	
DMT (1 (2)	<18.5	2762	(4.1)	
BMI (kg/m²)	≥25	15232	(22.9)	
Smoking status	Current	22487	(33.7)	
Smoking status	Previous	8506	(12.8)	
HIV risk	MSM	29892	(44.9)	
	ART Naive	22983	(34.5)	
ART history	ART Experienced, VL<200 cps/mL	30425	(45.7)	
	ART Experienced, VL≥200 cps/mL	11995	(18.0)	
Prior AIDS or non-	AIDS cancer	3160	(4.7)	
Prior AIDS (non-ca	ancer) event	13536	(20.3)	
		Median	IQR	
Baseline date, moi	nth/year	12/05	(01/04, 01/12)	
Age, years		40.9	(34, 48)	
CD4 cell count at b	paseline, cells/mm³	455	(295, 647)	
	revious ART, years	5.6	(2.1-8.5)	

Age-standardized incidences of all cancer, AIDS-defining cancers, and infection-related cancers decreased over time from 2006-2019 in the RESPOND and D:A:D cohort collaborations.

The incidence of non-AIDS defining cancers and smoking-related cancers remained constant over time, whilst BMI-related cancers increased.

• Cancers were split into ADCs and NADCs, and into infection-related (IRCs), smoking-related (SRCs), and BMI-related cancers (BRCs; defined in Figure 1 footnote, groups were not mutually exclusive).

RESULTS

- Overall, 66,636 individuals were included (Table 1): 35,436 from D:A:D, 21,281 from RESPOND, 9,919 included in both collaborations.
- During 489,856 person-years of follow-up (PYFU; median FU 7.5 years [IQR 3.8-11.6]),
 there were 3634 incident cancers (IR 7.4/1000 PYFU [95% CI 7.2-7.7]):
 1078 ADCs and 2556 NADCs; 1775 were IRCs, 1273 SRCs, and 608 BRCs.
- The most common incident cancers were non-Hodgkin lymphoma (n=517), Kaposi's sarcoma (473), lung cancer (391), and anal cancer (269).
- Age-standardized IRs for overall cancers, ADCs, and IRCs slightly decreased over time, whilst NADCs and SRCs remained fairly constant, and BRCs increased (Figure 1).
- After adjusting for a wide range of potential confounders, the IR of all cancers, ADCs, and IRCs decreased over time, whilst NADCs and SRCs slightly increased and BRCs substantially increased (Table 2).

Figure 1 - Age-standardized incidence rates over time of: a) all cancers, b) AIDS and non-AIDS cancers, c) infection-related, smoking-related, and BMI-related cancers

Table 2: Change in incidence of cancer per 2-year increase in calendar year, adjusted for potential confounders

	All cancer		ADCs			NADCs		
IRR	(95% CI)	P	IRR	(95% CI)	P	IRR	(95% CI)	Р
0.96	(0.94, 0.98)	0.001	0.83	(0.79, 0.86)	<0.0001	1.03	(1.00, 1.06)	0.038
	IRCs		SRCs			BRCs		
	10-01-01			(0.50(.01)			/OF0/ CI)	6
IRR	(95% CI)	P	IRR	(95% CI)	P	IRR	(95% CI)	Р
0.87	(95% CI) (0.85, 0.90)	P <0.0001		(95% CI) (1.01, 1.09)	0.008	1.10	(95% CI) (1.04, 1.16)	0.001
0.87		<0.0001	1.05	(1.01, 1.09)	0.008	1.10	(1.04, 1.16)	0.001
0.87	(0.85, 0.90)	<0.0001	1.05 odel adjust	(1.01, 1.09) ted for age, gender,	0.008 ethnicity, CD4 o	1.10 count, CD4	(1.04, 1.16) 4 nadir, prior cancer,	0.001 ART-

• There was a significant interaction between time period and baseline ART-experience for all cancers (interaction p<0.0001; Figure 2). For ART-naïve participants, cancer incidence decreased over time and for those ART-experienced, cancer incidence remained constant.

Figure 2: Change in the age-adjusted incidence of cancer, by time period compared to 2006-2007, stratified by ART-experience at baseline

IRR calculated from a Poisson regression model, adjusted for age and including an interaction term between time period and ART-experience at baseline

LIMITATIONS

- Median age of 41 years may be too young to fully assess cancer incidence.
- Median follow-up of 7.5 years may be too short for some individuals to develop cancer.
- Other factors could explain the trends, e.g. alcohol use, family history of cancer, or use of cancer screening, which are not collected in the cohorts.

CONCLUSIONS

- In this large cohort collaboration with extensive follow-up, the agestandardized incidence of all cancers, ADCs, and IRCs significantly decreased from 2006-2019, whilst NADCs and SRCs remained constant and BRCs significantly increased.
- Adjusting for demographics, HIV-related factors, co-infections and comorbidities did not fully explain the trends seen; further research is needed to better understand the causes of these cancer trends.

The RESPOND Study Group:
https://www.chip.dk/Studies/RESPOND/Study-Group
https://www.chip.dk/Studies/RESPOND/Study-Group

References: [1] Weber R, et al. HIV Med. 2013 [2] Bedimo R, et al. CID. 2004 [3] Park LS, et al. AIDS. 2016 [4] Worm SW, et al. BMC Infect Dis. 2013 [5] INSIGHT START Study Group. NEJM. 2015