

CD4 Cell Count Trends After Common Cancers in People With HIV: A Multicohort Collaboration

Blegdamsvej 9, DK-2100 Copenhagen Ø, Denmark
Tel.: 0045 50 17 80 26
alisa.timiryasova@regionh.dk

RE
SPOND
D:A:D
International Cohort Consortium of Infectious Diseases

Alisa Timiryasova¹, L. Greenberg¹, P. Domingo², P.E. Tarr³, A. Egle⁴, C. Martin⁵, C. Mussini⁶, F. Wit⁷, A. Cingolani⁸, J.J. Vehreschild^{9,10,11}, A. Castagna¹², K. Petoumenos¹³, C. Sabin¹⁴, A. Borges^{1,15}, W. El-Sadr¹⁶, F. Bonnet¹⁷, J. Lundgren¹, A.S. Hosein¹⁸, C. Carlander¹⁹, A. Amstutz³, K. Grabmeier-Pfistershamer²⁰, H. Gargis²¹, A. Marongiu²², L. Young²³, L. Peters¹, L. Ryom^{1,24,25} for the D:A:D and RESPOND Study Groups

¹CHIPI, Rigshospitalet, University of Copenhagen, Denmark; ²EuroSIDA cohort, Hospital de la Santa Creu i Sant Pau, Spain; ³Swiss HIV Cohort Study (SHCS), University of Basel, Switzerland; ⁴3rd Medical Department, Paracelsus Medical University Salzburg; ⁵CHU Saint-Pierre, Centre de Recherche en Maladies Infectieuses a.s.b.l., Belgium; ⁶Modena HIV Cohort, Università degli Studi di Modena, Italy; ⁷AIDS Therapy Evaluation in the Netherlands (ATHENA) cohort, HIV Monitoring Foundation, the Netherlands; ⁸Italian Cohort Naïve Antiretrovirals (ICONA), Fondazione Policlinico A. Gemelli, IRCCS, Italy; ⁹Department I of Internal Medicine, Faculty of Medicine and University Hospital, Germany; ¹⁰German Centre for Infection Research, Partner Site Bonn-Cologne, Germany; ¹¹Department II of Internal Medicine, Hematology/Oncology, Goethe University, Germany; ¹²San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, Italy; ¹³The Australian HIV Observational Database (AHOD), UNSW, Australia; ¹⁴Centre for Clinical Research, Epidemiology, Modelling and Evaluation (CREME), Institute for Global Health, University College London, UK; ¹⁵Department of Infectious Disease Immunology, Center for Vaccine Research, Statens Serum Institut; ¹⁶PCPRA (USA), CAP-Columbia University and Harlem Hospital, USA; ¹⁷CHU de Bordeaux and Bordeaux University, BPH, INSERM U1219, France; ¹⁸European AIDS Treatment Group, Belgium; ¹⁹Karolinska University Hospital, Sweden; ²⁰Medical University of Vienna, Austria; ²¹ViiV Healthcare, Global Medical, Durham, USA; ²²Gilead Sciences, Real World Evidence Virology department, UK; ²³Merck Sharp & Dohme, Global Medical Affairs, Rahway, USA; ²⁴Department of clinical medicine, University of Copenhagen, Denmark; ²⁵Department of Infectious Diseases, Hvidovre University Hospital, Denmark

BACKGROUND

- Whilst opportunistic infection prophylaxis is recommended to all individuals with HIV and CD4 <200 cells/µL, those undergoing chemo- or radiotherapy are advised to commence prophylaxis regardless of the CD4 level according to the EACS guidelines (1)
- These recommendations are based on historical data predating modern antiretroviral therapy (ART). Therefore, there is a pressing need to reevaluate CD4 count trajectories during cancer treatment in the context of contemporary ART

OBJECTIVES

- To assess CD4 trends before and after the most commonly occurring cancers in individuals with HIV and the proportions with CD4 decline to below 200 cells/µL after a cancer
- To assess potential risk factors associated with a decline in CD4 cell count to below 200 cells/µL after a cancer diagnosis

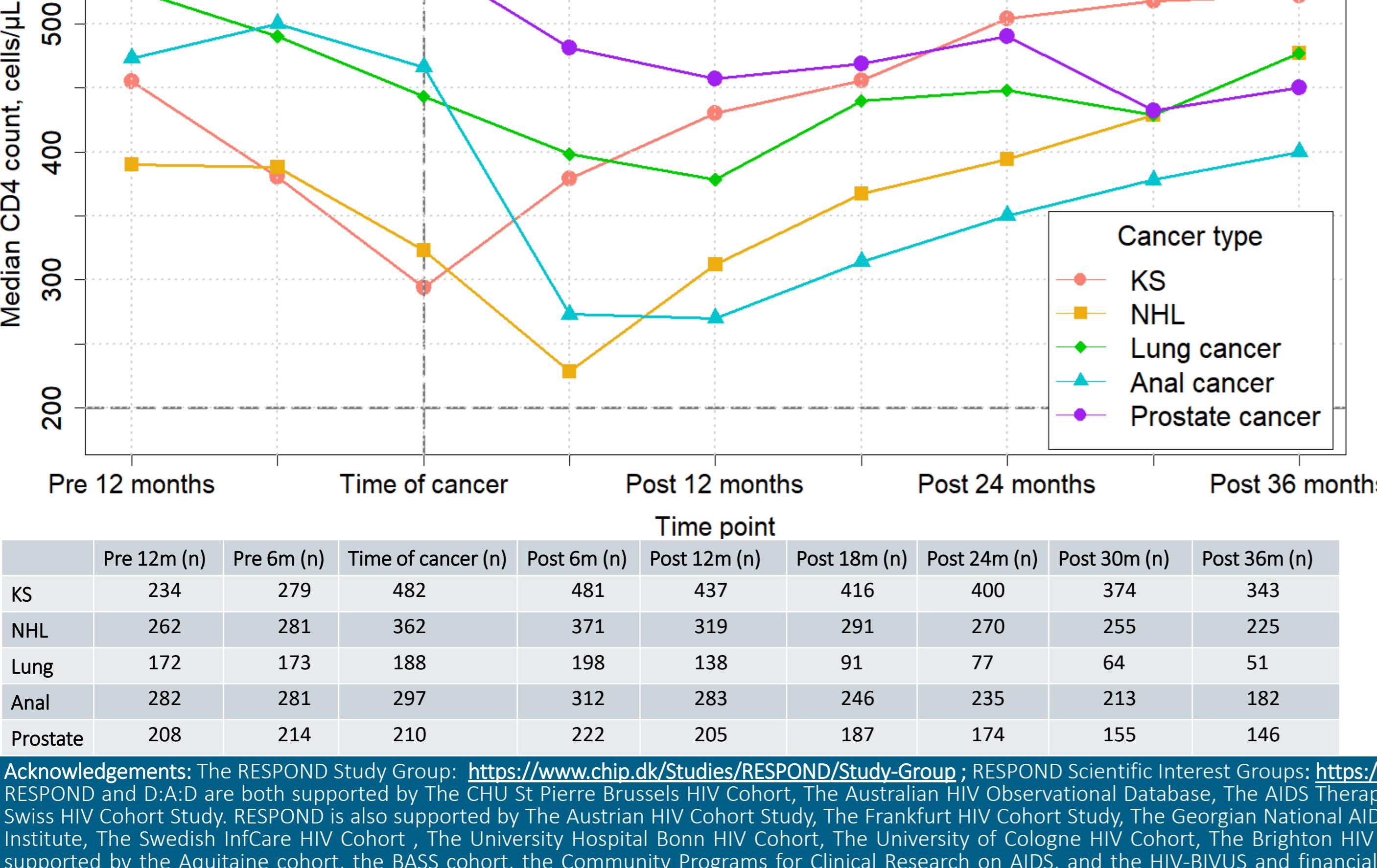
METHODS

- We included participants from the D:A:D and RESPOND cohorts with one of the most commonly occurring cancers (**Kaposi's sarcoma (KS), non-Hodgkin lymphoma (NHL), lung, anal, or prostate cancer**), alive for >6 months after cancer diagnosis, and had a minimum of two CD4 counts within 6-12 months after cancer diagnosis
- Participants were followed from the latest of cohort enrolment and 1 Jan 2006 (D:A:D)/2012 (RESPOND) until death, last follow-up (FU), or cohort censoring (D:A:D 1 Feb 2016; RESPOND 31 Dec 2021)
- Median CD4 count at the time of cancer diagnosis and the proportion of participants with a CD4 count decline below 200 cells/µL (up to three years after cancer diagnosis) was calculated, and mixed effects logistic regression models assessed predictors of the decline
- Sensitivity analysis evaluated death as a competing risk of CD4 decline <200 cells/µL after cancer diagnosis

Table 1. Characteristics at time of cancer diagnosis

	Kaposi's sarcoma (n=504)		Non-Hodgkin lymphoma (n=390)		Lung cancer (n=206)		Anal cancer (n=333)		Prostate cancer (n=237)	
	n	(%)	n	(%)	n	(%)	n	(%)	n	(%)
Sex/Gender										
Male	470	(93.3)	326	(83.6)	152	(73.8)	296	(88.9)	237	(100.0)
Ethnicity/Race										
White	214	(42.5)	213	(54.6)	137	(66.5)	215	(64.6)	171	(72.2)
Black	25	(5.0)	27	(6.9)	2	(1.0)	6	(1.8)	8	(3.4)
Cancer stage										
Localised	75	(15)	43	(11.0)	78	(37.9)	218	(65.5)	143	(60.3)
Disseminated	41	(8)	63	(16.1)	85	(41.3)	44	(13.2)	30	(12.7)
Unknown	388	(76.9*)	284	(72.8*)	43	(20.9)	71	(21.3)	64	(27)
ART experienced	320	(63.5)	325	(83.3)	194	(94.2)	319	(95.8)	229	(96.6)
	Median	IQR	Median	IQR	Median	IQR	Median	IQR	Median	IQR
Age, years	43	(36, 51)	48	(40, 55)	57	(50, 63)	52	(46, 58)	63	(59, 69)
CD4 nadir, cells/mm ³	170	(48, 300)	160	(68, 272)	141	(43, 252)	113	(26, 225)	178	(80, 276)
Baseline CD4, cells/mm ³	300	(106, 469)	328	(190, 499)	460	(310, 701)	484	(299, 682)	559	(410, 725)

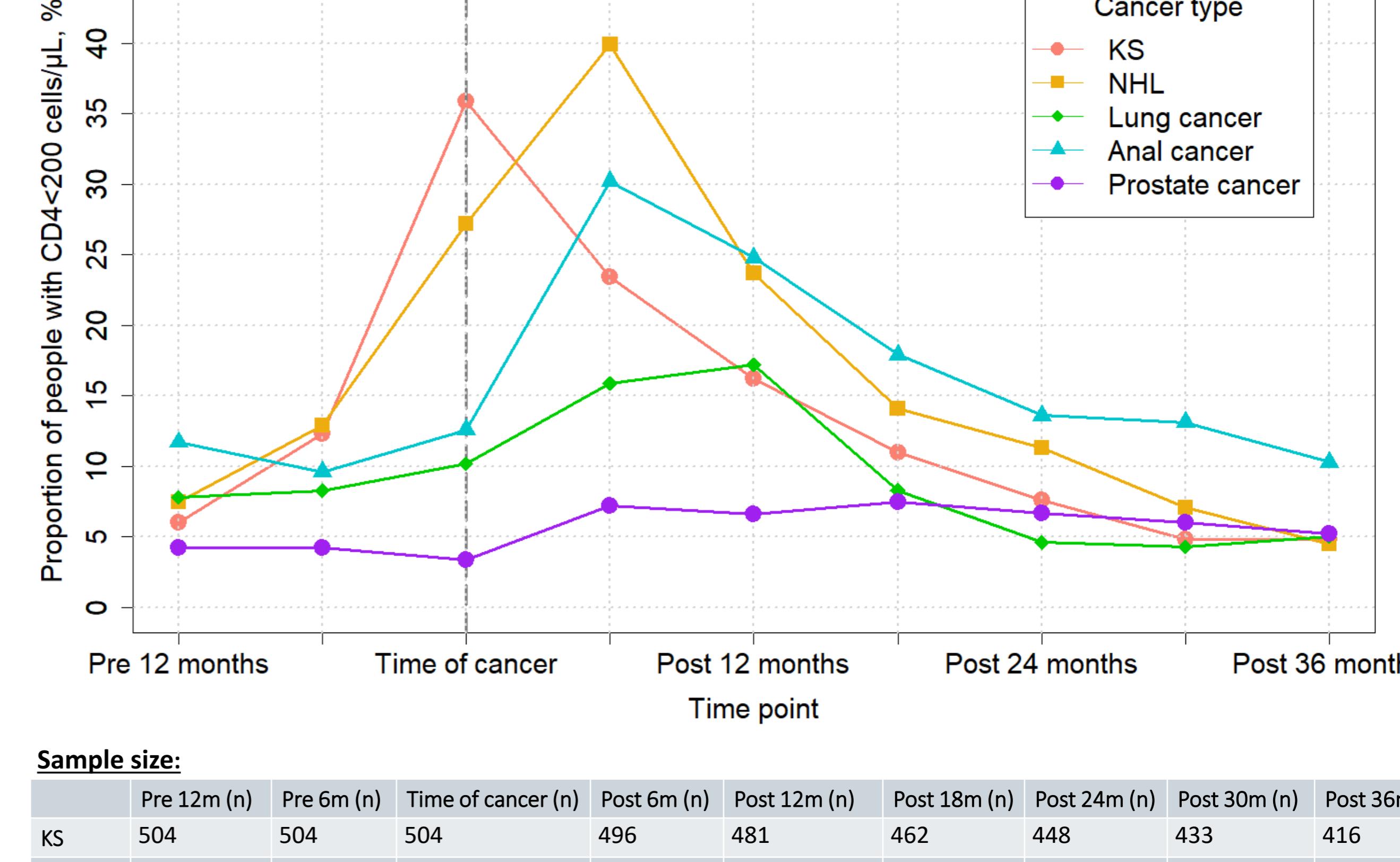
* Cancer stage for KS and NHL was not collected in D:A:D


RESULTS

- In all, 1,670 persons (KS: 504, NHL: 390, lung: 206, anal: 333, prostate cancer: 237) with 9,597 person-years of follow-up (FU) after cancer diagnosis were included, baseline characteristics are shown in Table 1
- Median FU time was 5.3 years, [Interquartile Range (IQR) 2.3-8.4] (KS: 7.0 [4.0-9.3], NHL: 5.5 [2.2-8.8], anal: 5.1 [2.6-8.0], prostate: 4.9 [2.8-7.7], lung: 1.7 [0.9-3.9])
- We excluded 815 participants due to the lack of two CD4 counts within 6-12 months after cancer diagnosis; 50% died within 12 months after diagnosis, and 50% had no CD4 measurements in their HIV clinics

MEDIAN CD4 COUNT AFTER CANCER DIAGNOSIS

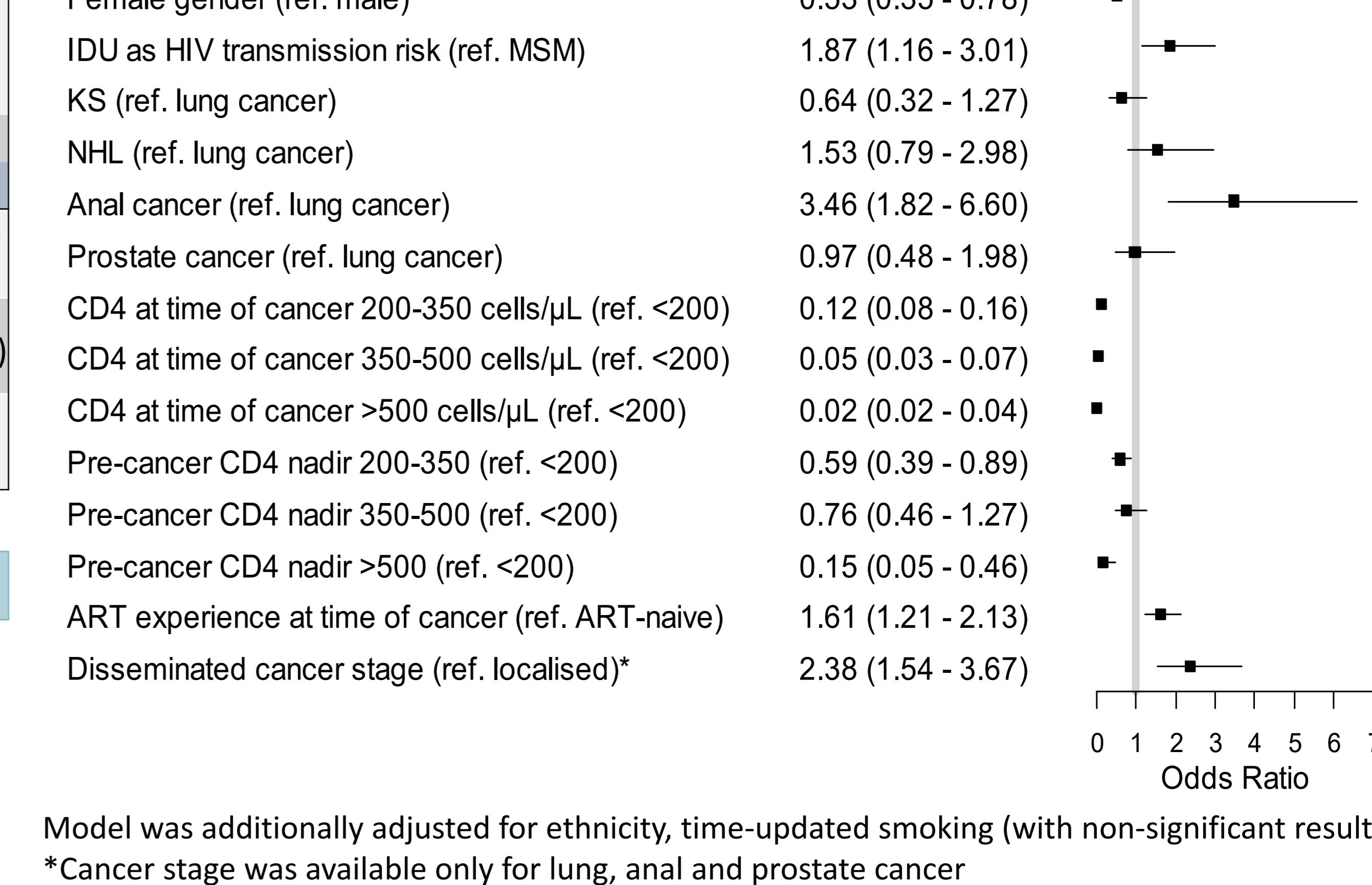
The median CD4 count at cancer diagnosis varied depending on the type of cancer: lowest for KS, highest for prostate cancer (KS: 294 cells/µL [IQR 105-474], NHL: 323 [163-495], lung: 443 [290-664], anal: 466 [270-680], prostate: 551 [407-696]) (Figure 1)


Figure 1. Median CD4 count trends before/after cancer diagnosis

PROPORTION OF PARTICIPANTS WITH A CD4 COUNT BELOW 200 CELLS/µL

The highest proportion of individuals with a CD4 count below 200 cells/µL was at time of cancer diagnosis for KS (36%) and at 6 months after cancer diagnosis in those with NHL (40%) and anal cancer (30%) (Figure 2)

Figure 2. Proportion of people with CD4<200 cells/µL after cancer


Sample size:

	Pre 12m (n)	Pre 6m (n)	Time of cancer (n)	Post 6m (n)	Post 12m (n)	Post 18m (n)	Post 24m (n)	Post 30m (n)	Post 36m (n)
KS	504	504	504	496	481	462	448	433	416
NHL	389	389	389	381	342	319	301	281	268
Lung	206	206	206	201	151	109	87	70	60
Anal	333	333	333	331	318	296	273	252	232
Prostate	236	236	236	235	229	213	195	182	174

RISK FACTORS FOR CD4 COUNT BELOW 200 CELLS/µL AFTER CANCER

- In adjusted models, higher CD4 counts at the time of cancer diagnosis were associated with lower odds of CD4 decline to below 200 cells/µL after cancer
- Participants with anal cancer had 3.5 times higher odds of having a CD4 decline below 200 cells/µL compared to those with lung cancer
- Other predictors of having CD4 decline below 200 cells/µL included disseminated cancer stage, male gender and injection drug use as HIV transmission risk (Figure 3)
- Results of sensitivity analysis were consistent with the results of the primary regression model

Figure 3. Adjusted Odds Ratios (aOR) (95% Confidence Interval) for CD4 decline <200 cells/µL after cancer

