The Kirby Institute, UNSW Australia dboettiger@kirby.unsw.edu.au

Ph. +61 2 9385 0859

D:A:D Is Nelfinavir Exposure Associated with Cancer Incidence in HIV-positive individuals?

DC Boettiger¹, CA Sabin², A Grulich¹, L Ryom³, F Bonnet⁴, P Reiss⁵, A d'Arminio Monforte⁶, O Kirk³, A Phillips², M Bower⁷, G Fätkenheuer⁸, JD Lundgren³, M Law¹ on behalf of the Data collection on Adverse events of Anti-HIV Drugs (D:A:D) study group

¹The Kirby Institute, UNSW Australia, Sydney, Australia; ²Research Department of Infection and Population Health, University College London, London, UK;

³CHIP, Department of Infectious Diseases, Section 2100, Rigshospitalet - University of Copenhagen, Denmark; ⁴CHU de Bordeaux and INSERM U897, Université de Bordeaux, France;

⁵Division of Infectious Diseases and Department of Global Health, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands; ⁶Department of Health Sciences, San Paolo University Hospital, Milan, Italy;

⁷National Centre for HIV Malignancy, Chelsea & Westminster Hospital, London, United Kingdom; ⁸Leiter Infektiologie, Klinik I für Innere Medizin, Universitätsklinikum Köln (AöR), Köln, Germany

BACKGROUND

Nelfinavir exhibits potent anti-cancer properties against a range of tumour types.¹ However, in 2006/07, nelfinavir supplies were accidently contaminated with ethyl mesilate, a known carcinogen.² This analysis investigated the association between nelfinavir and cancer risk in a large cohort of HIV-positive persons.

METHODS

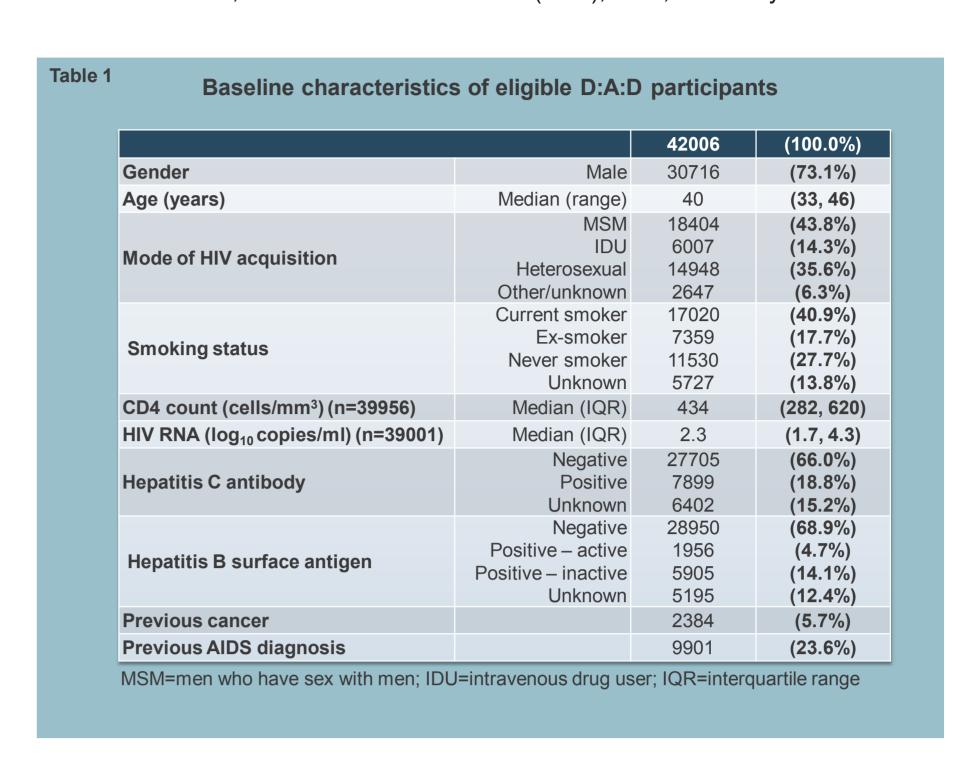
D:A:D participants were followed from the latest of 1/Jan/2004 or D:A:D study entry (baseline), until the earliest of a first incident cancer diagnosis, 1/Feb/2014, death, or 6 months after the last visit. We performed analyses on all cancer types, AIDS-defining, non-AIDS-defining, and non-infection-related cancer types. Poisson regression models were used to assess associations between cancer incidence and cumulative nelfinavir exposure, current nelfinavir exposure, and exposure to nelfinavir between 1/Jul/2006 and 30/Jun/2007 (the period in which nelfinavir was most heavily contaminated).

RESULTS

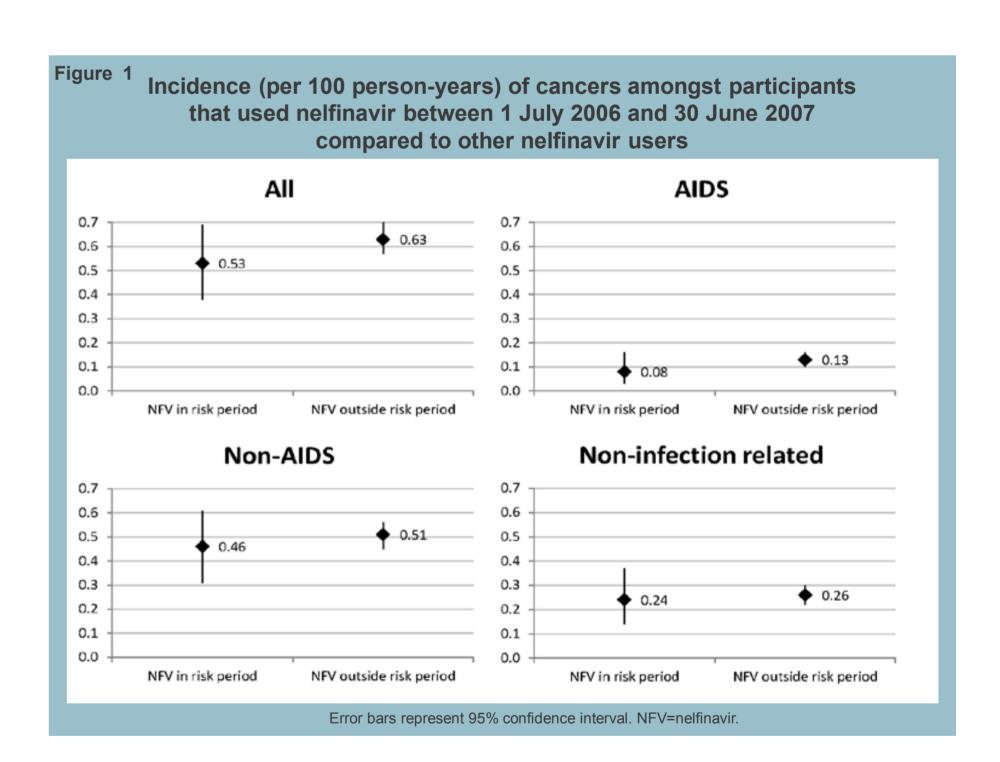
- Baseline characteristics of included persons are shown in **Table 1**.
- 42,006 participants contributed 303,005 person-years of follow-up.
- 8,305 participants had a median of 1.7 (IQR 0.7-3.4) years of prior nelfinavir exposure. During follow-up, 8,781 individuals contributed 4,376 person-years of nelfinavir use; 1,063 of whom were potentially exposed to contaminated nelfinavir.
- Overall, 2,279 cancers were diagnosed at a rate of 0.75 (95%CI 0.72-0.78) per 100 person-years; 810 were AIDS-defining (0.27 [0.25-0.29]), 1,469 were non-AIDS-defining (0.48 [0.46-0.51]), and 763 were non-infection-related (0.25 [0.23-0.27]).
- Greater cumulative exposure to nelfinavir and current use of nelfinavir were not associated with a reduced cancer risk compared with use of other protease inhibitors (Table 2A and 2B, respectively).
- Incidences of the cancer types evaluated were similar amongst individuals exposed to potentially contaminated nelfinavir and other nelfinavir users (**Figure 1**).
- These comparisons remained similar when adjusted for important demographic variables and hepatitis status (**Table 3**).

CONCLUSIONS

Nelfinavir use was not associated with reduced cancer incidence compared to other protease inhibitor regimens. It appears the 2006/07 carcinogenic contamination of nelfinavir did not increase cancer incidence in those exposed.


REFERENCES

1) Gantt S et al. Curr Opin Oncol 2013,25:495-502; 2) European Medicines Agency. Questions and answers on the follow-up to the contamination of Viracept (nelfinavir) with ethyl mesilate. London; 24 July 2008.


The D:A:D Study group

Steering Committee: Members indicated w/ *; ¢ chair;

Cohort Pls: W El-Sadr* (CPCRA), G Calvo* (BASS), F Dabis* (Aquitaine), O Kirk* (EuroSIDA), M Law* (AHOD), A d'Arminio Monforte* (ICONA), L Morfeldt* (HivBIVUS), C Pradier* (Nice), P Reiss* (ATHENA), R Weber* (SHCS), S De Wit* (Brussels). Cohort coordinators and data managers: M Hillebreght, S Zaheri, L Gras, (ATHENA), M Bruyand, S Gerrard, E Pernot, J Mourali (Aquitaine), H McManus, S Wright (AHOD), S Mateu, F Torres (BASS), M Delforge (Brussels), G Bartsch, G Thompsen (CPCRA), J Kjær, D Kristensen (EuroSIDA), I Fanti (ICONA), E Fontas, C Caissotti (Nice), A Sundström, G Thulin (HivBIVUS), M Rickenbach (SHCS). Statisticians: CA Sabin*, AN Phillips*, DA Kamara, CJ Smith, A Mocroft. D:A:D coordinating office: L Ryom, CI Hatleberg, RS Brandt, D Raben, C Matthews, A Bojesen, J Nielsen, JD Lundgren*¢. Member of the D:A:D Oversight Committee: B Powderly*, N Shortman*, C Moecklinghoff *, G Reilly*, X Franquet*. D:A:D working group experts: Kidney: L Ryom, A Mocroft, O Kirk*, P Reiss*, M Ross, CA Fux, P Morlat, O Moranne, C Smit, DA Kamara, CJ Smith, JD Lundgren*¢ Mortality: CJ Smith, L Ryom, AN Phillips*, R Weber*, P Morlat, C Pradier*, P Reiss*, N Friis- Møller, J Kowalska, JD Lundgren*¢ Cancer: CA Sabin*, L Ryom, M Law*, A d'Arminio Monforte*, F Dabis*, M Bruyand, P Reiss*, CJ Smith, DA Kamara, M Bower, G Fätkenheuer, A Donald, A Grulich, JD Lundgren*¢. External endpoint reviewer: A Sjøl (CVD), P Meidahl (oncology), JS Iversen (nephrology). Funding: 'Oversight Committee for The Evaluation of Metabolic Complications of HAART' with representatives from academia, patient community, FDA, EMA and a consortium of AbbVie, Boehringer Ingelheim, Bristol-Myers Squibb, Gilead Sciences, ViiV Healthcare, Merck, Pfizer, F. Hoffmann-La Roche and Janssen Pharmaceuticals.

A) Cumulative	All		AIDS-defining		Non-AIDS-defining		Non-infection-related	
	aRR (95%CI)	р	aRR (95%CI)	р	aRR (95%CI)	р	aRR (95%CI)	р
NFV-ART	0.93 (0.82, 1.06)	0.26	0.59 (0.45, 0.77)	0.01	1.19 (1.03, 1.37)	0.02	1.17 (0.96, 1.43)	0.12
Non-NFV, PI- ART	0.82 (0.78, 0.87)	0.01	0.47 (0.41, 0.54)	0.01	1.05 (0.99, 1.13)	0.12	0.98 (0.89, 1.07)	0.63
NNRTI-ART	0.68 (0.63, 0.73)	0.01	0.27 (0.23, 0.33)	0.01	0.97 (0.89, 1.05)	0.43	0.97 (0.86, 1.08)	0.5
Other ART	0.92 (0.85, 1.00)	0.05	0.65 (0.55, 0.77)	0.01	1.09 (0.99, 1.19)	0.08	1.03 (0.90, 1.17)	0.6
B) Current	All		AIDS-defining		Non-AIDS-defining		Non-infection-related	
	aRR (95%CI)	р	aRR (95%CI)	р	aRR (95%CI)	р	aRR (95%CI)	р
NFV-ART	0.98 (0.68, 1.41)	0.92	1.28 (0.72, 2.28)	0.40	0.86 (0.54, 1.37)	0.52	0.73 (0.35, 1.55)	0.4
Non-NFV, PI- ART	1	-	1	-	1	-	1	-
NNRTI-ART	0.81 (0.73, 0.89)	0.01	0.73 (0.61, 0.88)	0.01	0.85 (0.76, 0.95)	0.01	0.93 (0.79, 1.09)	0.3
Other ART	0.85 (0.71, 1.02)	0.07	0.78 (0.56, 1.10)	0.16	0.88 (0.71, 1.08)	0.21	0.97 (0.73, 1.29)	0.8
No ART	1.39 (1.23, 1.56)	0.04	2.35 (1.97, 2.80)	0.01	0.78 (0.65, 0.93)	0.04	1.01 (0.80, 1.28)	0.9

Association between cancer and nelfinavir exposure between 1 July 2006 and 30 June 2007													
	All		AIDS-defining		Non-AIDS-defining		Non-infection-related						
	aRR (95%CI)	р	aRR (95%CI)	р	aRR (95%CI)	р	aRR (95%CI)	р					
Exposed to NFV in risk period	1.07 (0.78, 1.46)	0.68	0.58 (0.25, 1.31)	0.19	1.23 (0.88, 1.72)	0.23	1.25 (0.78, 2.00)	0.35					
Exposed to NFV outside risk period	1.07 (0.74, 1.21)	0.31	1.02 (0.77, 1.36)	0.87	1.08 (0.94, 1.25)	0.27	1.07 (0.87, 1.30)	0.53					

Reference group for each treatment category is all other ART exposure. All models adjusted for age, gender, mode of infection, hepatitis B surface antigen/hepatitis C antibody status and history of previous cancer. As in previous D:A:D analyses, CD4 and HIV viral load are not included in the models as they are on the causal pathway between ART use and cancer occurrence. NFV=nelfinavir; aRR=adjusted rate ratio; CI=confidence interval.