The ability of four genotypic resistance algorithms to predict HIV-RNA response 4-24 weeks after initiating a boosted PI containing regimen

Z Fox¹, J Kjær¹, AN Phillips², L Ruiz³, B Clotet³, S Staszewski⁴, C Holkmann Olsen¹, A Horban⁵, B Ledergerber⁶ and JD Lundgren¹

¹Copenhagen HIV Programme, Copenhagen, Denmark; ²Royal Free and University College Medical School, London, UK; ³Hospital Germans Trias i Pujol, Badalona, Spain; ⁴Antiretroviral Research Unit, JW Goethe-University, Frankfurt am Main, Germany; ⁵Centrum Diagnostyki i Terapii AIDS, Poland, Warsaw; ⁶Zurich University Hospital, Zurich, Switzerland

z.fox@pcps.ucl.ac.uk

BACKGROUND

- Genotypic interpretation systems (GIS) are used to translate lists of mutations into a sensitivity score for each antiretroviral (ARV)
- ARVs are usually assigned a sensitivity score of 1 if the virus is deemed to be sensitive to that ARV, 0.5 for intermediate resistance and o for full resistance
- These scores are summed to generate an overall genotypic sensitivity score (GSS) for the regimen
- Ritonavir has been used to boost levels of other protease inhibitors (PIs) since the late 1990s
- There is limited information available on the prognostic value of GISs for patients receiving ritonavir-boosted protease inhibitors (PI/r)

OBIECTIVES

- To compare PI/r resistance levels using four GISs and relate these levels to viral load reductions from PI/r initiation (baseline) to the first viral load measurement between 4 and 24 weeks
- To assign a GSS to the rest of the regimen (i.e. excluding the PI/r) and explore the relationship between this GSS and virological response

DATA

- EuroSIDA is a prospective, observational cohort of 11,928 HIV-1 infected patients from 83 centres across 28 European countries, Israel and Argentina
- EuroSIDA patients who started a single PI/r were included in the analysis if they had genotyping performed on plasma samples (viral load >500 cps/ml) in the year prior to starting the PI/r

METHODS

- Each sequence of mutations was run through the following GISs:
 - **REGA**: Dec. 2004, version 6.4
 - ANRS: Sept. 2005, version 13
 - Detroit Medical Center (DMC): Oct. 2004
 - Stanford University: May 2006, version 4.2.0
- Neither DMC or Stanford had interpretations for all of the PI/rs investigated in this study so the interpretations for the unboosted PI were used instead
- Concordance between PI/r resistance levels was evaluated using kanna statistics
- Factors associated with viral load change were identified through censored regression analysis

RESULTS

- Baseline HIV-1 genotypic resistance tests were available for 376 patients [55 indinavir/r (15%), 231 lopinavir/r (61%), 33 saquinavir/r (9%), 28 amprenavir/r (7%) and 29 atazanavir/r (8%)]
- Every GIS predicted high levels of sensitivity to the PI/r received at
- Using REGA 68 (18%) patients had a virus with intermediate or full
 resistance to the PI/r they received [10 (18%), 44 (19%), 3 (9%), 9
 (32%) and 2 (7%) patients had a virus with resistance/intermediate
 resistance to indinavir/r, lopinavir/r, saquinavir/r, amprenavir/r and
 atazanavir/r respectively]
- More patients were deemed to have a virus with resistance/intermediate resistance to the PI/r received using either the DMC or Stanford GIS (Figure 1)
- There were 197 (52%) patients overall who had a virus that was susceptible to ≥ 2 Non-PI ARVs using the REGA GIS. Similar numbers were found using the other GISs (data not shown)

Concordance

Kappa statistics to evaluate concordance ranged from 0.48 to 0.79 for indinavir/r; 0.34 to 0.77 for lopinavir/r; 0.30 to 0.57 for saquinavir/r; 0.01 to 0.38 for amprenavir/r; and 0.31 to 1.00 for atazanavir/r (Table 1)

Virological response

- Median (IQR) baseline viral load was 4.0 (3.2 to 4.9) log₁₀ cps/ml
- After a median (IQR) 13 (9 to 17) weeks from the start of the PI/r-containing regimen this was reduced by a mean 1.8 (95% CI: 1.7 to 1.9) log. cps/ml
- Mean viral load reductions were 1.3 (0.8 to 1.8), 1.4 (1.0 to 1.8) and 1.9 (1.8 to 2.1) log₁₀ cps/ml for viruses that were resistant, intermediate resistant and sensitive to the PI/r using the REGA GIS
- After adjustments for baseline viral load, the time between baseline
 and follow-up viral load values and also for the time between baseline
 resistance test and the date of PI/r initiation all GISs showed
 significantly greater reductions as sensitivity to the PI/r increased
 (p<0.01 in all cases) in a censored regression analysis that takes into
 account the partial observation of reduction
- Using Stanford, patients sensitive to the PI/r had a 0.84 greater log₁₀ reduction from baseline compared to patients with full resistance
- The GSS to the rest of the regimen (i.e. all ARVs excluding the PI/r) was not a predictor of response (Figure 2)
- We also restricted the analysis to the 301 (80%) PI-experienced patients. This group experienced smaller HIV-RNA reductions but with more noticeable differences between PI/r resistance levels

SUMMARY AND CONCLUSIONS

- Overall concordance between GISs was moderate
- The highest concordance was between REGA and ANRS for lopinavir/r, saquinavir/r and atazanavir/r
- The lowest concordance between predicted resistance levels existed for amprenavir/r
- Viral load reductions of >1 log₁₀ cps/ml were still seen for patients with a virus deemed fully resistant according to each GIS.
 This suggests that either PI/rs exert antiviral effects in the presence of resistance or that the nucleoside backbone actively reduces viral load despite PI/r resistance
- GISs need further refinement so there is better agreement between them and they capture the magnitude of viral load changes observed when using ritonavir boosted PIs more accurately

ACKNOWLEDGEMENTS The Furnish DA Study Group

The EuroSIAN Study Group

The multicenter study group on EuroSIDA (national coordinators in parenthesis). Argentinat (M Losso). A Duran, Hospital JM Ramos Mejia, Buenos Aires, Austrias (W Vetter) Pulmologisches Zentrum der Stadt Wien, Vienna, Belanus (Karpon). A Vassilenko, Belarus State Medical University, Mins Belgium (R) Cumed S) See With, 1901. Sint-Pierre Hospital, Euroseka, 2 Colcobunders, Institute of Topical Medicine, Antwerp. Czech Republic: (I, Machala) H Rozsypal, Reculty Hospital Supeling, 1901. State Pierre Hospital, Spenhogen, Gentral Christophia, Christophia, Capture, 1901. State Pierre Hospital, Spenhogen, 19 Gentral, Texteresterin, 8-E Hamen, P Skinlan, Rightsophiale, Lopenhogen, C Pedersen, Odense (Min, Hudower Hospital, Copenhogen, 19 Gentral, Hospital Schola, 1901. State Pierre Hospital, Pierre Hospital, Spenhogen, 19 (1901. State Pierre). Program of Part Merchanis (National) Program of Part Merchanis (

