Increased risk of cardiovascular disease (CVD) with age in men: a comparison of D:A:D with HIV negative CVD risk equations

Background

- Risk of CVD in HIV positive (HIV+) persons compared to HIV negative (HIV-) populations is difficult to determine
 - Matched controls needed
 - Some studies estimate a 1.5 to 2 fold increased risk
 - Triant et al 2007 – demonstrated an increased risk of CVD in HIV+ compared to HIV- populations that also increased with age

- Hypothesis:
 - if the risk of CVD increases faster with age in HIV+ persons, then we would expect the risk of CVD events per year older to be higher in D:A:D relative to the general population
Objectives

• To statistically model the relative increased risk of CVD per year older in D:A:D

• To compare to the relative risk of CVD per year older from conventional CVD risk equations from the general population
Methods (1)

• **Inclusion**: men without prior CVD and with conventional CVD risk factors available
 • age, family history of CVD, smoking, diabetes, cholesterol, HDL and systolic blood pressure

• **Endpoints**:
 • myocardial infarction (MI)
 • coronary heart disease (CHD): MI or invasive coronary procedure or CVD death
 • CVD: CHD or stroke.
Methods (2)

• Poisson regression analyses
 • Fitted a number of age effects adjusted for CVD risk factors in D:A:D risk equation
 • family history of CVD, smoking, cumulative (per year) lopinavir and indinavir use, recent (within 6 months) abacavir use, diabetes, cholesterol, HDL and systolic blood pressure

• Sensitivity analyses
 • adjusting for calendar year, participating cohort
 • restricting the analysis to age less than 65 years
 • including all men regardless whether CVD risk factors were available
Methods (3)

CVD risk equations general population

• Framingham Heart Study
 • Anderson 1991 (FHS_A)
 • Wilson 1998 (FHS_W)
 • D’Agostino 2008 (FHS_D)
 • n>5500, age 30-74, baseline 1968-1975

• CUORE (Ferrario 2005)
 • Italian male cohort
 • n>6800, age 35-69, baseline 1986-1995

• ASSIGN (Woodward 2006)
 • Scottish Heart Health Extended cohort
 • n>12,000, baseline 1984-1989, age 30-74
Methods (4)

• Graphically compared relative risk increase from age 40 years to age 65 years using the age effect in D:A:D and the age effects in the general population equations

• Unable to statistically compare D:A:D to the general equations due to different age effects
 • 95% confidence intervals for the D:A:D models

• Risk modification at age 50
 • stop smoking, cholesterol reduced by 1 mmol/mL, systolic blood pressure reduced by 10mmHg
Results (1)

- 24,323 men with complete CVD risk factors were included in analyses
 - 139,115 person years (pyrs)

- 474 MI, 683 CHD and 884 CVD incident events

- Crude event rates (MI, CHD, CVD respectively):
 - 40-45 years: 2.29, 3.11 and 3.65 /1000 pyrs
 - 60-65 years: 6.53, 11.91 and 15.89/1000 pyrs
Comparison of different modelled age effects in D:A:D - CVD

![Graph showing the comparison of different modelled age effects](image-url)
Relative risk of CHD from age 40 years
Relative risk of CVD from age 40 years
Relative risk of MI from age 40 years

![Graph showing the relative risk of MI from age 40 years with age on the x-axis and relative hazard on the y-axis. The graph includes lines for DAD and FHS_A, with shaded areas indicating the upper and lower confidence limits (UCL/LCL).]
Comparison with Triant et al, 2007

Triant VA et al, 2007 J Clin Endocrinol Metab, pg 2506-12
Comparison with Triant et al, 2007
Comparison with Triant et al, 2007

VA Triant et al, 2007 J Clin Endocrinol Metab, pg 2506-12
Comparison with Triant et al, 2007

Triant VA et al, 2007 J Clin Endocrinol Metab, pg 2506-12
Relative risk of CVD with age – D:A:D
Modifying risk: stop smoking

![Graph showing the relative hazard of smoking across different ages. The graph indicates a significant increase in relative hazard with age.]

- Relative Hazard
- Age
- Smoking
Modifying risk: stop smoking, cholesterol (↓1 mmol/L)
Modifying risk: stop smoking, cholesterol (↓ 1 mmol/L), SYS BP (↓ 10 mmHG)
Limitations

• Unable to perform statistical comparisons of the age effects with the general population
 • D:A:D 95% CI range
 • Assessed a number of endpoints and against several general population equations – evidence of consistency
• Models extrapolate over a 25+ year age range based on a median of 6 years of follow-up
• Comparison with HIV negative population risk equations
Conclusion

• We found an increased relative risk for CVD with age in D:A:D, but only slightly faster in D:A:D compared with the general population risk equations
 • Our analysis suggests that the additional risk of HIV infection is not unlike other risk factors such as smoking

• Risk may be reduced
 • HIV+ people in routine clinical care – early intervention to reduce CVD risks
Acknowledgements

Steering Committee: Members indicated w/ *; ç chair;

Cohort PIs: W El-Sadr* (CPCRA), G Calvo* (BASS), F Dabis* (Aquitaine), O Kirk* (EuroSIDA), M Law* (AHOD), A d’Arminio Monforte* (ICONA), L Morfeldt* (HivBIVUS), C Pradier* (Nice), P Reiss* (ATHENA), R Weber* (SHCS), S De Wit* (Brussels)

Cohort coordinators and data managers: S Zaheri, M Hillebregt, L Gras (ATHENA), M Bruyand, S Geffard, (Aquitaine), H McManus, S Wright (AHOD), S Mateu, F Torres (BASS), M Delforge (Brussels), G Bartsch, G Thompsen (CPCRA), J Kjær (EuroSIDA), I Fanti, T Formenti (ICONA), E Fontas, C Caissotti (Nice), A Sundström, G Thulin (HivBIVUS), M Rickenbach (SHCS)

Statisticians: CA Sabin*, AN Phillips*, A Mocroft, DA Kamara, C Smith

D:A:D coordinating office: L Ryom, RS Brandt, J Tverland, M Mansfeld, D Raben, JD Lundgren*ç

Member of the D:A:D Oversight Committee: B Powderly*, N Shortman*, C Moecklinghoff*, G Reilly*

Community representative: X Franquet*

D:A:D renal working group experts: C Fux, M Ross, P Morlat, O Moranne

External endpoint reviewer: A Sjoel

Funding: ‘Oversight Committee for The Evaluation of Metabolic Complications of HAART’ with representatives from academia, patient community, FDA, EMEA and a consortium of “Abbott, Boehringer Ingelheim, Bristol-Myers Squibb, Gilead Sciences, ViiV Healthcare, Merck, Pfizer, F. Hoffmann-La Roche and Janssen Pharmaceuticals