Association between Markers of Immunosuppression and the Risk of Cardiovascular Disease (CVD): the D:A:D Study

C Sabin, SW Worm, M Law, W El-Sadr, P Reiss, M Bruyand, E Fontas, A d’Arminio Monforte, R Weber, O Kirk, De Wit, TD Lundgren

Research Department of Infection and Population Health

Rowland Hill Street, London NW3 2PF

E-mail: c.sabin@ucl.ac.uk

Background

The evidence for a potential role of immune suppression in the development of cardiovascular disease (CVD) is conflicting. While some studies have reported a higher risk of CVD in those with a low CD4 count, others have not. While such an association, if present, could suggest an inflammatory effect of untreated HIV infection, it may also reflect bias resulting from increased monitoring frequency in those with low CD4 counts or residual confounding.

Aim of the Study

We considered associations between the latest and nadir CD4 count, and time spent with a CD4 count <200 cells/mm³ from baseline, and the following clinical outcomes:

1. Myocardial infarction (MI)
2. Coronary heart disease (CHD): MI, sudden cardiac death or invasive coronary procedure
3. Stroke
4. CVD: First CHD or stroke event

Methods

The D:A:D Study is an observational study of >49,000 HIV-positive patients from 11 cohorts from Europe, Australia, and the United States. The primary aim is to investigate associations between use of antiretroviral drugs and risk of CVD and other major disease events.

Data are collected prospectively during routine clinic visits; the standardised dataset includes information on socio-demographic factors, AIDS events and deaths, known risk factors for CVD, laboratory markers for monitoring HIV (including CD4 count and HIV RNA) and CVD, antiretroviral treatment and treatments that influence CVD risk.

All incident cases of MI and stroke are reported to the study co-ordinating centre for validation and coding using criteria applied in the WHO MONICA Study. Reported MI are classified as definite, possible, or unclassifiable, strokes are classified as definite or possible.

Statistical Methods

Individuals recruited to cohorts I and II of the D:A:D Study (n=33,301) were followed from study entry to the earliest of an endpoint, death, 2 February 2010 or 6 months after the last clinic visit.

Analyses were performed using Poisson regression with the latest CD4, nadir CD4 and duration of immune suppression as time-updated covariates.

Multivariable models included adjustment for potential confounders: sex, age, previous CVD, body mass index, smoking status (all events), hypertension (stroke event only), cohort, HIV exposure, ethnicity, family history of CVD, calendar year, cumulative/recent exposure to antiretrovirals (MI, CHD, CVD events)

As ongoing cytomegalovirus (CMV) infection has been reported to be associated with an increased risk of CVD in the general population, analyses investigated a possible modifying effect of CMV infection, as a surrogate for CMV infection, on the reported associations with immune suppression; to investigate whether any association with CMV may be explained by bias due to increased monitoring frequency in those with an opportunistic infection, sensitivity analyses also considered the potential modifying effect of other, non-CMV, AIDS-defining opportunistic infection.

Results

Overview of the Study

The D:A:D Study experienced 1766 MI, 1565 CHD, 407 stroke and 1374 CVD events (Table 1).

In unadjusted analyses, individuals with latest and nadir CD4 counts >500 cells/mm³ tended to experience higher rates of all four endpoints (Figure 1) and (ii). After controlling for potential covariates, however, there was no strong evidence that this higher risk remained (Table 2). Stroke and CVD rates did, however, remain substantially higher in those with a latest CD4 <100 cells/mm³.

All events occurred less frequently in individuals who had never experienced immune suppression, although evidence for a strong linear association between each event and duration of immune suppression was weak (Figure 1(iii)).

The latest CD4 count was independently associated with both stroke (relative risk: 0.79 [0.72, 0.86]); 2-fold higher risk (p<0.0001) after adjustment for the nadir count and duration of immune suppression, neither of which remained associated with either event in adjusted models.

Additional adjustment for prior CMV disease, which was significantly associated with CVD risk but not stroke did not modify the associations between the latest CD4 count and risk of either event (Table 3). A previous non-CMV, AIDS-defining opportunistic infection was associated with an increased risk of both events although, with CVD adjustment for these infections did not modify the reported associations with the latest CD4 count.

Conclusions

While no associations were seen between the measures of immunosuppression and MI or CHD, the latest CD4 count was associated with stroke and CVD. Thus, stroke appears to be the event that is driving the association between earlier CD4 count and CVD endpoints.

The association between CMV infection and MI risk, reported in the general population, does not, in this study, at least appear to be specific for CMV. Thus in our setting, the identification of patients with opportunistic infection as a surrogate for CMV infection, on the reported associations with immune suppression; to investigate whether any association with CMV may be explained by bias due to increased monitoring frequency in those with an opportunistic infection, sensitivity analyses also considered the potential modifying effect of other, non-CMV, AIDS-defining opportunistic infection.

Statistical Analysis

Figure 1

- **Panel (i)**: Incidence of each endpoint with CMV (black line) stratifying by (i) latest CD4 count, (ii) nadir CD4 count, (iii) duration of immunosuppression.
- **Panel (ii)**: Incidence of each endpoint stratifying by (i) latest CD4 count, (ii) nadir CD4 count, (iii) duration of immunosuppression.
- **Panel (iii)**: Incidence of each endpoint stratifying by (i) latest CD4 count, (ii) nadir CD4 count, (iii) duration of immunosuppression.

Table 1: Number of events, event rate and 95% confidence intervals

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Latest CD4 count</th>
<th>Nadir CD4 count</th>
<th>Duration of immune suppression</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVD</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Relative risks (95% CI) for progression to each endpoint

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Lowest CD4 count</th>
<th>Second CD4 (nadir)</th>
<th>Duration of immune suppression</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVD</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Addtional impact of adjusting for CMV disease and other AIDS-defining opportunistic infections

Comparison

- **Lowest CD4 count**: 1.07 [0.91, 1.31], p=0.0001
- **Duration of immune suppression**: 1.09 [0.91, 1.31], p=0.0001
- **Other AIDS-defining opportunistic infection**: 1.20 [0.95, 1.53], p=0.0001

Acknowledgements

Sara Condliffe, Dennis Morgan, Eileen Green, John Law, Alan Nunn, Paul McKeating,季国华（中国）, Detlev Doerr (USA), David Cooper (UK), David Ho (USA), Vitor Franco-Macedo (Brazil), Malgorzata Dukaczewska-Szumilinska (Poland), Christian Poiesz (US), William Holder (US), John P. Sullivan (US), and David Cooper (UK).

Funding

Overnight Committee for The Evaluation of Medicines and Compounds of AIDS, with representation from academia, patient community, WHO, EMA and a consensus of experts, Backpage Ingledew, International Union of Immunostology, Global Science, ViiV Healthcare, Mimes, Plan, Y Hoffmann-La Roche and various Pharma manufacturers.

Download poster at: www.cphiv.dk