PREDICTION OF GLOBAL CVD RISK IN HIV-POSITIVE PERSONS

N Friis-Møller, L Ryom, C Smith, R Weber, P Reiss, F Dabis, S De Wit, A D’Arminio Monforte, O Kirk, E Fontas, C Sabin, A Phillips, J Lundgren, M Law

for the D:A:D Study Group
Background

• With the aging of the population living with HIV, the absolute risk of cardiovascular disease (CVD) is increasing

• There is a need to further facilitate the identification of HIV-positive persons at increased risk of CVD

Purpose of study:

• Updated CVD prediction models
 • Global CVD risk *
 • Baseline CVD risk factors
 • Full and reduced D:A:D models (+/- ARVs)

Methods – participants and outcome

• 32,663 HIV-positive persons from 20 countries in Europe and Australia, who
 ✓ were free of CVD at entry into the D:A:D Study
 ✓ had complete information on CVD risk factors

• Outcome: A composite CVD endpoint that included
 • Myocardial infarction
 • Stroke
 • Invasive coronary artery procedure (including coronary artery bypass or angioplasty)
 • Carotid artery endarterectomy
 • Death from other CVD

• All CVD outcomes are reported real time, and are centrally validated
Methods – Participant follow-up

• Predictive risk equations based on Cox regression models
• Individuals were followed from D:A:D entry to the first of:
 • CVD
 • Six months after last clinic visit
 • 1st February 2011
• Full and reduced D:A:D models (+/- ARVs)
 • Estimated 5-year risk of CVD
• Comparison: Recent Framingham model re-calibrated to the D:A:D dataset
There were 1,010 CVD in 32,663 individuals followed for 186,364.5 person-years

Rate: 5.42 per 1,000 person-years

95% CI: 5.09-5.76
Components of Composite CVD Outcome

- MI: 493
- Bypass: 44
- Angioplasty: 129
- Carotid endarterectomy: 13
- Stroke: 36
- Other CVD death: 1010

$n=1010$
Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>No CVD (n=31,653)</th>
<th>CVD (n=1,010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>years</td>
<td></td>
</tr>
<tr>
<td></td>
<td>39 (33-46)</td>
<td>47 (41-57)</td>
</tr>
<tr>
<td>Female</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26.0</td>
<td>12.5</td>
</tr>
<tr>
<td>Smoking current / former</td>
<td>%</td>
<td>51.9 / 16.7</td>
</tr>
<tr>
<td>Diabetes</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.8</td>
<td>10.4</td>
</tr>
<tr>
<td>Systolic BP</td>
<td>mmHg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>120 (110-130)</td>
<td>130 (120-140)</td>
</tr>
<tr>
<td>Total cholesterol</td>
<td>mmol/L</td>
<td>4.8 (4.1-5.7)</td>
</tr>
<tr>
<td>HDL cholesterol</td>
<td>mmol/L</td>
<td>1.14 (0.91-1.42)</td>
</tr>
<tr>
<td>cART/PI/ NRTI</td>
<td>years</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.75 / 0.68 / 2.42</td>
<td>3.19 / 1.44 / 4.34</td>
</tr>
<tr>
<td>CD4 count</td>
<td>cells/µL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>440 (290-630)</td>
<td>402(260-611)</td>
</tr>
<tr>
<td>HIV RNA <50 copies/mL</td>
<td>%</td>
<td>53.8</td>
</tr>
</tbody>
</table>
Risk Factors Considered

- Age
- Sex
- Blood pressure (systolic and diastolic)
- Smoking (current, former)
- Diabetes
- Family history of CVD
- Serum values of
 - Total (TC) and HDL cholesterol (TC:HDL ratio)
 - Triglycerides
 - CD4 / HIV-RNA
- HIV-exposure category
- cART
 - IDV/r, LPV/r, PI, NRTI as cumulative exposure
 - Abacavir as current exposure
- Body-mass index (BMI)
- Lipodystrophy
Risk Factors Included

- Age
- Sex
- Blood pressure (systolic) and diastolic
- Smoking (current, former)
- Diabetes
- Family history of CVD
- Serum values of
 - Total (TC) and HDL cholesterol (TC:HDL ratio)
 - Triglycerides
 - CD4 / HIV-RNA
- HIV-exposure category
- cART
 - IDV/r, LPV/r, PI, NRTI as cumulative exposure
 - Abacavir as current exposure
- Body-mass index (BMI)
- Lipodystrophy
Three Models

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>D:A:D Full</th>
<th>D:A:D Reduced</th>
<th>Framingham</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sex</td>
<td>+</td>
<td>+</td>
<td>Seperate models by sex</td>
</tr>
<tr>
<td>Diabetes</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Smoking Current and former</td>
<td>Current and former</td>
<td>Current and former</td>
<td>Current</td>
</tr>
<tr>
<td>Total and HDL cholesterol</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Systolic BP</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Family History CVD</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>CD₄ cell count</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Abacavir - current</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI - cum. exposure</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRTI – cum. exposure</td>
<td>+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Three Models – Hazard Ratios from Cox Models

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Per unit</th>
<th>D:A:D Full</th>
<th>D:A:D Reduced</th>
<th>Framingham (men)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>ln</td>
<td>22.0</td>
<td>24.0</td>
<td>21.4</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td>1.37</td>
<td>1.41</td>
<td>-</td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
<td>1.96</td>
<td>2.08</td>
<td>1.78</td>
</tr>
<tr>
<td>Smoking current / former</td>
<td></td>
<td>2.25 / 1.24</td>
<td>2.26 / 1.27</td>
<td>1.92 / -</td>
</tr>
<tr>
<td>Total and HDL cholesterol</td>
<td>ln</td>
<td>2.58 / 0.61</td>
<td>2.98 / 0.59</td>
<td>3.08 / 0.39</td>
</tr>
<tr>
<td>Systolic BP (#: if treated)</td>
<td>ln</td>
<td>4.59</td>
<td>4.56</td>
<td>6.91 / 7.38 #</td>
</tr>
<tr>
<td>Family History CVD</td>
<td></td>
<td>1.37</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>CD4 cell count</td>
<td></td>
<td>0.89</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>Abacavir - current</td>
<td></td>
<td>1.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI - cum. exposure</td>
<td>year</td>
<td>1.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRTI – cum.exposure</td>
<td>year</td>
<td>1.03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5-year CVD risk – Age and Diabetes

- Framingham model
- D:A:D reduced model
- D:A:D Full model
- Observed Kaplan-Meier
Summary (I)

D:A:D models tailored to HIV-positive persons
 • based on observed data in HIV-positive persons

What’s new:
 • Additional 80,000 PY of follow-up (total of 186,000 PY)
 • One outcome only: Global CVD risk
 • Based on baseline rather than time-updated risk parameters (Cox model)
 • Full and reduced D:A:D models (+/- ARVs)
 • CD4 count included
Summary (II)

- The recent Framingham model for global CVD risk can be re-calibrated to predict well in HIV-positive persons in the D:A:D Study population.
- However, our analyses suggest that risk equations developed from the D:A:D dataset are superior in HIV-positive persons, in particular for the accuracy of prediction in subgroups.
- Generalizability of the D:A:D prediction models require external independent validation in cohorts of HIV positive persons.
Perspectives

Holistic approach

• Assessment of global CVD risk

• Individual level: In the clinical context to inform doctor patient discussions on CVD risks and interventions
 • Moderate-high CVD risk: more targeted interventions to reduce this risk

• Population level: for research purposes of estimations of predicted risk at population levels

Updated D:A:D models will become available at:

Acknowledgements

Steering Committee: Members indicated w/ *, ¢ chair;
Cohort PIs: W El-Sadr* (CPCRA), G Calvo* (BASS), F Dabis* (Aquitaine), O Kirk* (EuroSIDA), M Law* (AHOD), A d’Arminio Monforte* (ICONA), L Morfeldt* (HivBIVUS), C Pradier* (Nice), P Reiss* (ATHENA), R Weber* (SHCS), S De Wit* (Brussels)

Cohort coordinators and data managers: M Hillebrecht, S Zaheri, L Gras, (ATHENA), M Bruyand, S Geffard, (Aquitaine), H McManus, S Wright (AHOD), S Mateu, F Torres (BAS), M Delforge (Brussels), G Bartsch, G Thompsen (CPCRA), J Kjær (EuroSIDA), Iuri Fat (ICONA), E Fontas, C Caissotti (Nice), A Sundström, G Thulin (HivBIVUS), M Rickenbach (SHCS)

Statisticians: CA Sabin*, AN Phillips*, DA Kamara, CJ Smith, A Mocroft

D:A:D coordinating office: L Ryom, R Brandt, J Tverland, D Raben, M Mansfeld, J Nielsen, JD Lundgren*¢

Member of the D:A:D Oversight Committee: B Powderly*, N Shortman*, C Moecklinghoff*, G Reilly*, X Franquet*

External endpoint reviewer: A Sjøl (CVD), P Meidahl (oncology), JS Iversen (nephrology)

Funding: ‘Oversight Committee for The Evaluation of Metabolic Complications of HAAR with representatives from academia, patient community, FDA, EMA and a consortium: AbbVie, Boehringer Ingelheim, Bristol-Myers Squibb, Gilead Sciences, ViïV Healthca, Merck, Pfizer, F. Hoffmann-La Roche and Janssen Pharmaceuticals"