Chronic kidney disease and exposure to antiretroviral drugs in a large cohort with long-term follow-up: The EuroSIDA Study

Ole Kirk, Amanda Mocroft, Peter Reiss, Stephane De Wit, Dalibor Sedlacek, Marek Beniowski, Jose Gatell, Andrew Phillips, Bruno Ledergerber, Jens Lundgren, for the EuroSIDA Study Group
Background

- Renal impairment in HIV-positive persons might be caused by traditional and HIV-related factors

- Impact of long-term exposure to specific antiretrovirals (ARVs) remains poorly elucidated

- Chronic kidney disease (CKD)*: a persistent reduction in glomerular filtration rate (GFR) to below 60 ml/min/1.73m² and/or albuminuria

*: National Institute of Diabetes and Digestive and Kidney Diseases
Methods (I)

- The EuroSIDA study, 103 clinics in 35 countries

- Eligible patients: ≥3 serum creatinine and corresponding body weight measurements from 2004 and onwards

- CKD defined as confirmed:
 - eGFR ≤60 if baseline eGFR >60 mL/min/1.73m²
 - 25% decline if baseline eGFR ≤60 mL/min/1.73m²

- Primary analysis: Cockcroft-Gault formula

- Poisson regression used to determine factors (incl. ARVs) associated with CKD

*: (2 measurements ≥3 months apart)
Methods (II)

- ARV exposure calculated as cumulative exposure on a monthly basis and modelled as time-updated variable

- Sensitivity analyses:
 - using MDRD and CKD-EPI formulas for assessment of eGFR
 - variety of censoring strategies
 - alternative means of categorizing ARV/cART status:
 - never used / <1 year / 1-2 years / 2-3 years / > 3 years
 - never exposed / exposed but not currently taking / exposed and currently taking
 - on any cART regimen/ non-PI cART / non-boosted PI, non-ritonavir cART / non-boosted PI, ritonavir cART / ritonavir boosted cART
Results

Baseline characteristics (n=6843):
• 24.9% females
• 85.5% Caucasians
• 42.8% MSM
• 31.2% prior AIDS
• 23.1% HCV+ ab
• 89.8% exposed to cART
• 21.7% arterial hypertension
• 4.9% diabetes mellitus
• Median age: 42.8 (IQR: 37.5-50.0) years
• Median CD4 cell count: 450 (IQR: 305-638) cells/mm³

Follow-up:
21,482 PYFU; median 3.7 (IQR: 2.8-5.7) years
• 225 (3.3%) progressed to CKD
CKD, confirmed (persisting for >3 months) decrease in eGFR ≤ 60 mL/min/1.73m² if eGFR at baseline >60 mL/min/1.73m² or confirmed 25% decrease in eGFR if baseline eGFR ≤ 60 mL/min/1.73m²

EuroSIDA
Kaplan-Meier progression to CKD

Incidence: 1.1 (0.9–1.2)/100 PYFU
203/225 (90%) had a baseline eGFR >60 mL/min/1.73m²
150/203 (74%) had a decline in eGFR of >10 mL/min/1.73m²

CKD, confirmed (persisting for >3 months) decrease in eGFR ≤ 60 mL/min/1.73m² if eGFR at baseline >60 mL/min/1.73m² or confirmed 25% decrease in eGFR if baseline eGFR ≤ 60 mL/min/1.73m²
Crude incidence rate of CKD and increasing exposure to ARVs

N with CKD

86 21 34 29 55
67 31 35 25 67
127 20 19 11 48
143 23 20 18 21

Incidence per 100 PYFU (95% CI)

Tenofovir
Indinavir
Atazanavir
Lopinavir/r

Years of exposure to ARV

Not started
0-1 1-2 2-3 >3

CKD, confirmed (persisting for >3 months) decrease in eGFR < 60 mL/min/1.73m² if eGFR at baseline >60 mL/min/1.73m² or confirmed 25% decrease in eGFR if baseline eGFR <60 mL/min/1.73m²

EuroSIDA
Poisson models

Cumulative exposure to ARVs and risk of CKD

<table>
<thead>
<tr>
<th></th>
<th>Univariable</th>
<th>Multivariable¤</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IRR*/year</td>
<td>95%-CI</td>
</tr>
<tr>
<td>Tenofovir</td>
<td>1.32</td>
<td>1.21-1.41</td>
</tr>
<tr>
<td>Indinavir</td>
<td>1.18</td>
<td>1.13-1.24</td>
</tr>
<tr>
<td>Atazanavir</td>
<td>1.48</td>
<td>1.35-1.62</td>
</tr>
<tr>
<td>Lopinavir/r</td>
<td>1.15</td>
<td>1.07-1.23</td>
</tr>
</tbody>
</table>

¤: also included baseline eGFR and AIDS, AIDS during follow-up*, use of nephrotoxic drugs*, current CD4 count*, age*, HIV-RNA*, any cardiovascular event*, arterial hypertension*, diabetes*, HCV antibody status*, non-AIDS malignancy*, and gender *

*: variable included as time-updated

No other ARVs or types of regimens associated with CKD

EuroSIDA

*: Incidence rate ratio
Cumulative exposure to ARVs and risk of CKD
Adjusted IRRs (per year of exposure)

- **Tenofovir**
- **Indinavir**
- **Atazanavir**
- **Lopinavir/r**

Cockcroft-Gault (n=225)
MDRD (n=277)
CKD-EPI (n=258)
INSIGHT def (n=129)
Cumulative exposure to ARVs and risk of CKD
Adjusted IRRs (per year of exposure)

- Tenofovir
- Indinavir
- Atazanavir
- Lopinavir/r

Censoring ATV
Censoring TDF
Censoring boosted PI

Adjusted IRRs (per year of exposure)

- Cockcroft-Gault
- MDRD
- CKD-EPI
- INSIGHT def
Stopping ARVs and risk of CKD

• Among patients stopping tenofovir during prospective follow-up:
 • Within first 12 months: IRR: 4.05 (2.51-6.53) compared with patients never exposed to tenofovir
 • After 12 months: IRR: 1.12 (0.63-1.99)

• The risk of CKD among patients stopping atazanavir or lopinavir/r is similar to that of patients not exposed to the specific ARVs
Limitations and strengths

- Non-randomised study, but based on a well described large cohort
- Heterogeneous study population with high levels of co-morbidity (contrast to randomised trials)
- A median follow-up of nearly 4 years
- Robustness of results using a large variety of different methods and estimations of GFR
- Insufficient follow-up to exclude association with the more recently introduced ARVs (darunavir, tipranavir, etravirine, maraviroc, raltegravir)
Summary

- Prevalence and incidence rate of CKD consistent with other studies
- Traditional risk factors for CKD also present in our study
- AIDS, non-AIDS malignancies and coinfection with HCV were also independently associated with CKD
- Increasing exposure to tenofovir associated with a higher risk of CKD
- Association with CKD also identified for indinavir and atazanavir
- Results for lopinavir/r less clear
Perspectives

- We have identified several ARVs associated with progressive, long-term renal impairment/CKD

- This may be due to
 - glomerular and tubular dysfunction (tenofovir)
 - high renal excretion rates and crystalluria/ crystal nephropathy/ nephrolithiasis (PIs)

- Although biologically plausible, the exact pathogenesis behind these findings remains to be elucidated

- Further follow-up and data needed to establish whether the risk of CKD continues to increase with longer exposure to the specific ARVs

- Studies on the clinical implications of the findings and the long-term consequences are warranted

EuroSIDA
The EuroSIDA Study Group

The multi-center study group of EuroSIDA (national coordinators in parenthesis).

Argentina: (M. Losso), C Elias, Hospital JM Ramos Mejia, Buenos Aires. Austria: (N Vetter), Pulumologisches Zentrum der Stadt Wien, Vienna; R Zangerle, Medical University Innsbruck, Innsbruck. Belarus: (I Karpov), A Vassilenko, Belarus State Medical University, Minsk, VM Mitsura, Gomel State Medical University, Gomel; O Suetnov, Regional AIDS Centre, Svetlogorsk. Belgium: (N Clumeck), S De Wit, M Delforge, Saint-Pierre Hospital, Brussels; R Colebunders, Institute of Tropical Medicine, Antwerp; L Vandenekerkhove, University Ziekenhuis Gent, Gent. Bosnia-Herzegovina: (V Hadiczomanovic), Klinicni Centar Universiteta Sarajevo, Sarajevo. Bulgaria: (K Kostov), Infectious Diseases Hospital, Sofia. Croatia: (J Begovac), University Hospital of Infectious Diseases, Zagreb. Czech Republic: (L Machala), H Rozsypal, Faculty Hospital Bulovka, Prague; D Sedlacek, Charles University Hospital, Prague. Denmark: (J Nielsen), G Kronborg, T Benfield, M Larsen, Hvidovre Hospital, Copenhagen; J Gerstoft, T Katzenstein, A-B E Hansen, P Skinhej, Rigshospitalet, Copenhagen; C Pedersen, Odense University Hospital, Odense, U. Listergaard, Skejby Hospital, Aarhus. Estonia: (K Zilmer), West-Tallinn Central Hospital, Tallinn; Jelena Smitd, Nakkusosakond Siseklinik, Kohtla-Järve. Finland: (M Ristola), Helsinki University Central Hospital, Helsinki. France: (C Katlama), Hôpital de la Pitié-Salpêtrière, Paris; J P Viard, Hôpital Necker-Enfants Malades, Paris; P M Girard, Hôpital Saint-Antoine, Paris; JM Livrezet, Hôpital Édouard Herriot, Lyon; P Vanhems, University Claude Bernard, Lyon; C Pradier, Hôpital de l'Archet, Nice; F Dabis, D Neau, Unité INSERM, Bordeaux. Germany: (J Rockstroh), Universitäts Klinik Bonn; R Schmidt, Medizinisch Hochschule Hannover; J van Lunzen, O Degen, University Medical Center Hamburg-Eppendorf, Infectious Diseases Unit, Hamburg; HJ Stellbrink, IPM Study Center, Hamburg; S Staszewski, JU Goethe University Hospital, Frankfurt; J Bogner, Medizinische Poliklinik, Munich; G. Fätkenheuer, Universität Köln, Cologne. Greece: (J Kosmidis), P Gargalianos, G Xylomenos, J Perdios, Athens General Hospital; G Panos, A Filandras, E Karabatski, 1st IKA Hospital; S Sambatakou, Hipokration General Hospital, Athens. Hungary: (Ö Banhegyi), Szent László Hospital, Budapest. Ireland: (A Chiesi), Istituto Superiore di Sanità, Rome; R Esposito, I Mazeu, C Mussini, Università Modena, Modena; C Arici, Ospedale Riuniti, Bergamo; R Pristera, Ospedale Regionale, Bolzano; F Mazzotta, A Gabbuti, Ospedale S Maria Annunziata, Firenze; V Vullo, M Lichtner, University of Rome la Sapienza, Rome; A Chirianni, E Montesarchio, M Gargiulo, Presidio Ospedaliero AD Cotugno, Monaldi Hospital, Naples; G Antonucci, F Iacomi, P Narciso, C Vlassi, M Zaccarelli, Istituto Nazionale Malattie Infettive Lazzaro Spallanzani, Rome; A Lazzarin, R Finazzi, Ospedale San Raffaele, Milan; M Galli, A Ridolfi, Osp. L. Sacco, Milan; A D'Arminio Montforte, Istituto Di Clinica Malattie Infettive e Tropicale, Milan. Latvia: (B Rozentale), I Zeltina, Infectology Centre of Latvia, Riga. Lithuania: (D Banhegyi), Szent Lásló Hospital, Budapest. Luxembourg: (P Reiss), Academisch Medisch Centrum bij de Universiteit van Amsterdam, Amsterdam. Norway: (J Bruun), A Maeland, V Ormaasen, Ullevål Hospital, Oslo. Poland: (B Knyzj) Gasiorowski, Medical University of Warsaw, Wrocław; A Horban, E Bąkowska, Centrum Diagnostyki i Terapii AIDS, Warsaw; A Grzeczkuk, R Filiask, Medical University, Białystok; A Boron-Kaczmarska, M Pyka, M Parczewski, Medical University, Szczecin; M Beriowska, E Mularska, Osrodek Diagnostyki I Terapii AIDS, Chorzow; H Trocha, Medical University, Gdansk; E Jablonowska, E Malepsza, K Wojciech, Wojewódzki Szpital Specjalistyczny, Lodz. Portugal: (F Antunes), E Valadas, Hospital Santa Maria, Lisbon; K Manskinho, Hospital de Egas Moniz, Lisbon; F Maltez, Hospital Curry Cabral, Lisbon. Romania: (O Duiculescu), Spitalul de Boli Infectioase si Tropicale, Dr. Victor Babes, Bucharest. Russia: (A Rakhananova), Medical Academy Botkin Hospital, St Petersburg; E Vinogradova, St Petersburg AIDS Centre, St Petersburg; S Buzunova, Novgorod Centre for AIDS, Novgorod. Serbia: (J Djevotic), The Institute for Infectious and Tropical Diseases, Belgrade. Slovakia: (M Mokraš), D Staneková, Dérer Hospital, Bratislava. Slovenia: (I Tomazic), University Clinical Centre Ljubljana, Ljubljana. Spain: (J González-Lahoz), V Soriano, P Labarga, J Medrano, Hospital Carlos III, Madrid; S Moreno, Hospital Ramon y Cajal, Madrid; B Clotet, A Jou, R Paredes, C Tural, J Puig, I Bravo, Hospital Germans Trias i Pujol, Badalona; JM Gatell, JM Miró, Hospital Clinic i Provincial, Barcelona; P Domingo, M Gutierrez, G Mateo, MA Sambat, Hospital Sant Pau, Barcelona. Sweden: (A Karlsson), Venhaelsan-Sodersjukhuset, Stockholm; L Flamholc, Malmö University Hospital, Malmö. Switzerland: (B Ledergerber), R Weber, University Hospital, Zürich; P Franciolli, M Cavassini, Centre Hospitalier Universitaire Vaudois, Lausanne; B Hirschel, E Boffito, Hospital Cantonal Universitaire de Geneve, Geneve; H Furrer, Inselspital Bern, Bern; M Battegay, E Malterer, University Hospital Basel. Ukraine: (E Kravchenko), N Chentsova, Kiev Centre for AIDS, Kiev; G Kutsyna, Luhansk State Medical University; Luhans; S Servitskiy, Odessa Region AIDS Center, Odessa; S Antoniak, Kiev; M Krasnov, Kharkov State Medical University, Kharkov. United Kingdom: (S Barton), St. Stephen's Clinic, Chelsea and Westminster Hospital, London; AM Johnson, D Mercey, Royal Free and University College Medical School, London (University College Campus); A Phillips, MA Johnson, A Mocroft, Royal Free and University College Medical School, London (Royal Free Campus); M Murphy, Medical College of Saint Bartholomew's Hospital, London; J Weber, G Scullard, Imperial College School of Medicine at St. Mary’s, London; M Fisher, Royal Sussex County Hospital, Brighton; C Leen, Western General Hospital, Edinburgh.

Virology group: B Clotet, R Paredes(Central Coordinators) plus ad hoc virologists from participating sites in the EuroSIDA Study. Steering Committee: F Antunes, B Clotet, D Duiculescu, J Gatell, B Gazzard, A Horban, A Karlsson, C Katlama, B Ledergerber (Chair), A D'Arminio Montforte, A Phillips, A Rakhananova, P Reiss (Vice-Chair), J Rockstroh Coordinating Centre Staff: J Lundgren (project leader), O Kirk, A Mocroft, N Friis-Møller, A Cozzi-Lepri, W Bannister, M Ellefsen, A Borch, D Podlekareva, J Kjær, L Peters, J Reekie, J Kowal ska

EuroSIDA
Q&As on our findings available at

www.cphiv.dk
Definitions

GFR (CG) = \frac{(140-\text{age}) \times \text{weight (kg)} \times 0.85 \text{ (if female)}}{\text{Serum creatinine} \times 72}

GFR (MDRD) = 186 \times \text{serum creatinine}^{-1.154} \times \text{age}^{-0.203} \times 0.742 \text{ (female)} \times 1.21 \text{ (black)}

CKD-EPI: Algorithm depending on race, gender and serum-creatinine

Our definition of CKD: confirmed (persisting for >3 months) decrease in eGFR ≤ 60 mL/min/1.73m² if eGFR at baseline >60 mL/min/1.73m² or confirmed 25% decrease in eGFR if baseline eGFR <60 mL/min/1.73m²

INSIGHT definition: 25% decrease in eGFR to <60 for those with a baseline eGFR >60 mL/min/1.73m², or 25% decrease in eGFR if baseline eGFR <60 mL/min/1.73m²

EuroSIDA
Definitions

CKD-EPI: Algorithm depending on race, gender and serum-creatinine

<table>
<thead>
<tr>
<th>Race and Sex</th>
<th>Serum Creatinine Level, (\mu \text{mol/L}) ((\text{mg/dL}))</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black Female</td>
<td>(\leq 62) ((\leq 0.7))</td>
<td>(\text{GFR} = 166 \times (\text{Scr}/0.7)^{-0.329} \times (0.993)^{\text{Age}})</td>
</tr>
<tr>
<td></td>
<td>(> 62) (>0.7)</td>
<td>(\text{GFR} = 166 \times (\text{Scr}/0.7)^{-1.209} \times (0.993)^{\text{Age}})</td>
</tr>
<tr>
<td>Male</td>
<td>(\leq 80) ((\leq 0.9))</td>
<td>(\text{GFR} = 163 \times (\text{Scr}/0.9)^{-0.411} \times (0.993)^{\text{Age}})</td>
</tr>
<tr>
<td></td>
<td>(> 80) (>0.9)</td>
<td>(\text{GFR} = 163 \times (\text{Scr}/0.9)^{-1.209} \times (0.993)^{\text{Age}})</td>
</tr>
<tr>
<td>White or other Female</td>
<td>(\leq 62) ((\leq 0.7))</td>
<td>(\text{GFR} = 144 \times (\text{Scr}/0.7)^{-0.329} \times (0.993)^{\text{Age}})</td>
</tr>
<tr>
<td></td>
<td>(> 62) (>0.7)</td>
<td>(\text{GFR} = 144 \times (\text{Scr}/0.7)^{-1.209} \times (0.993)^{\text{Age}})</td>
</tr>
<tr>
<td>Male</td>
<td>(\leq 80) ((\leq 0.9))</td>
<td>(\text{GFR} = 141 \times (\text{Scr}/0.9)^{-0.411} \times (0.993)^{\text{Age}})</td>
</tr>
<tr>
<td></td>
<td>(> 80) (>0.9)</td>
<td>(\text{GFR} = 141 \times (\text{Scr}/0.9)^{-1.209} \times (0.993)^{\text{Age}})</td>
</tr>
</tbody>
</table>

EuroSIDA